
GNU Libtool
For version 2.2.6, 1 August 2008

Gordon Matzigkeit
Alexandre Oliva
Thomas Tanner
Gary V. Vaughan

Copyright c© 2008 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document under the terms of
the gnu Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with
no Back-Cover Texts. A copy of the license is included in the section entitled "gnu Free
Documentation License".

Chapter 1: Introduction 1

1 Introduction

In the past, if a source code package developer wanted to take advantage of the power of
shared libraries, he needed to write custom support code for each platform on which his
package ran. He also had to design a configuration interface so that the package installer
could choose what sort of libraries were built.

gnu Libtool simplifies the developer’s job by encapsulating both the platform-specific
dependencies, and the user interface, in a single script. gnu Libtool is designed so that
the complete functionality of each host type is available via a generic interface, but nasty
quirks are hidden from the programmer.

gnu Libtool’s consistent interface is reassuring. . . users don’t need to read obscure
documentation in order to have their favorite source package build shared libraries. They
just run your package configure script (or equivalent), and libtool does all the dirty work.

There are several examples throughout this document. All assume the same environment:
we want to build a library, ‘libhello’, in a generic way.

‘libhello’ could be a shared library, a static library, or both. . . whatever is available
on the host system, as long as libtool has been ported to it.

This chapter explains the original design philosophy of libtool. Feel free to skip to the
next chapter, unless you are interested in history, or want to write code to extend libtool
in a consistent way.

1.1 Motivation for writing libtool

Since early 1995, several different gnu developers have recognized the importance of hav-
ing shared library support for their packages. The primary motivation for such a change
is to encourage modularity and reuse of code (both conceptually and physically) in gnu
programs.

Such a demand means that the way libraries are built in gnu packages needs to be
general, to allow for any library type the package installer might want. The problem is
compounded by the absence of a standard procedure for creating shared libraries on different
platforms.

The following sections outline the major issues facing shared library support in gnu,
and how shared library support could be standardized with libtool.

The following specifications were used in developing and evaluating this system:
1. The system must be as elegant as possible.
2. The system must be fully integrated with the gnu Autoconf and Automake utilities, so

that it will be easy for gnu maintainers to use. However, the system must not require
these tools, so that it can be used by non-gnu packages.

3. Portability to other (non-gnu) architectures and tools is desirable.

1.2 Implementation issues

The following issues need to be addressed in any reusable shared library system, specifically
libtool:
1. The package installer should be able to control what sort of libraries are built.

Chapter 1: Introduction 2

2. It can be tricky to run dynamically linked programs whose libraries have not yet been
installed. LD_LIBRARY_PATH must be set properly (if it is supported), or programs fail
to run.

3. The system must operate consistently even on hosts that don’t support shared libraries.
4. The commands required to build shared libraries may differ wildly from host to host.

These need to be determined at configure time in a consistent way.
5. It is not always obvious with what prefix or suffix a shared library should be installed.

This makes it difficult for ‘Makefile’ rules, since they generally assume that file names
are the same from host to host.

6. The system needs a simple library version number abstraction, so that shared libraries
can be upgraded in place. The programmer should be informed how to design the
interfaces to the library to maximize binary compatibility.

7. The install ‘Makefile’ target should warn the package installer to set the proper envi-
ronment variables (LD_LIBRARY_PATH or equivalent), or run ldconfig.

1.3 Other implementations

Even before libtool was developed, many free software packages built and installed their
own shared libraries. At first, these packages were examined to avoid reinventing existing
features.

Now it is clear that none of these packages have documented the details of shared library
systems that libtool requires. So, other packages have been more or less abandoned as
influences.

1.4 A postmortem analysis of other implementations

In all fairness, each of the implementations that were examined do the job that they were
intended to do, for a number of different host systems. However, none of these solutions
seem to function well as a generalized, reusable component.

Most were too complex to use (much less modify) without understanding exactly what
the implementation does, and they were generally not documented.

The main difficulty is that different vendors have different views of what libraries are,
and none of the packages that were examined seemed to be confident enough to settle on a
single paradigm that just works.

Ideally, libtool would be a standard that would be implemented as series of extensions
and modifications to existing library systems to make them work consistently. However, it
is not an easy task to convince operating system developers to mend their evil ways, and
people want to build shared libraries right now, even on buggy, broken, confused operating
systems.

For this reason, libtool was designed as an independent shell script. It isolates the
problems and inconsistencies in library building that plague ‘Makefile’ writers by wrapping
the compiler suite on different platforms with a consistent, powerful interface.

With luck, libtool will be useful to and used by the gnu community, and that the lessons
that were learned in writing it will be taken up by designers of future library systems.

Chapter 2: The libtool paradigm 3

2 The libtool paradigm

At first, libtool was designed to support an arbitrary number of library object types. After
libtool was ported to more platforms, a new paradigm gradually developed for describing
the relationship between libraries and programs.

In summary, “libraries are programs with multiple entry points, and more formally
defined interfaces.”

Version 0.7 of libtool was a complete redesign and rewrite of libtool to reflect this new
paradigm. So far, it has proved to be successful: libtool is simpler and more useful than
before.

The best way to introduce the libtool paradigm is to contrast it with the paradigm of
existing library systems, with examples from each. It is a new way of thinking, so it may
take a little time to absorb, but when you understand it, the world becomes simpler.

Chapter 3: Using libtool 4

3 Using libtool

It makes little sense to talk about using libtool in your own packages until you have seen
how it makes your life simpler. The examples in this chapter introduce the main features of
libtool by comparing the standard library building procedure to libtool’s operation on two
different platforms:

‘a23’ An Ultrix 4.2 platform with only static libraries.

‘burger’ A NetBSD/i386 1.2 platform with shared libraries.

You can follow these examples on your own platform, using the preconfigured libtool
script that was installed with libtool (see Section 5.4 [Configuring], page 24).

Source files for the following examples are taken from the ‘demo’ subdirectory of the
libtool distribution. Assume that we are building a library, ‘libhello’, out of the files
‘foo.c’ and ‘hello.c’.

Note that the ‘foo.c’ source file uses the cos math library function, which is usually
found in the standalone math library, and not the C library (see section “Trigonometric
Functions” in The GNU C Library Reference Manual). So, we need to add ‘-lm’ to the end
of the link line whenever we link ‘foo.lo’ into an executable or a library (see Chapter 9
[Inter-library dependencies], page 43).

The same rule applies whenever you use functions that don’t appear in the standard C
library. . . you need to add the appropriate ‘-lname ’ flag to the end of the link line when
you link against those objects.

After we have built that library, we want to create a program by linking ‘main.o’ against
‘libhello’.

3.1 Creating object files

To create an object file from a source file, the compiler is invoked with the ‘-c’ flag (and
any other desired flags):

burger$ gcc -g -O -c main.c

burger$

The above compiler command produces an object file, usually named ‘main.o’, from the
source file ‘main.c’.

For most library systems, creating object files that become part of a static library is as
simple as creating object files that are linked to form an executable:

burger$ gcc -g -O -c foo.c

burger$ gcc -g -O -c hello.c

burger$

Shared libraries, however, may only be built from position-independent code (PIC). So,
special flags must be passed to the compiler to tell it to generate PIC rather than the
standard position-dependent code.

Since this is a library implementation detail, libtool hides the complexity of PIC compiler
flags and uses separate library object files (the PIC one lives in the ‘.libs’ subdirectory
and the static one lives in the current directory). On systems without shared libraries, the

Chapter 3: Using libtool 5

PIC library object files are not created, whereas on systems where all code is PIC, such as
AIX, the static ones are not created.

To create library object files for ‘foo.c’ and ‘hello.c’, simply invoke libtool with the
standard compilation command as arguments (see Section 4.1 [Compile mode], page 15):

a23$ libtool --mode=compile gcc -g -O -c foo.c

gcc -g -O -c foo.c -o foo.o
a23$ libtool --mode=compile gcc -g -O -c hello.c

gcc -g -O -c hello.c -o hello.o
a23$

Note that libtool silently creates an additional control file on each ‘compile’ invocation.
The ‘.lo’ file is the libtool object, which Libtool uses to determine what object file may
be built into a shared library. On ‘a23’, only static libraries are supported so the library
objects look like this:

foo.lo - a libtool object file
Generated by ltmain.sh (GNU libtool) 2.2.6
#
Please DO NOT delete this file!
It is necessary for linking the library.

Name of the PIC object.
pic_object=none

Name of the non-PIC object.
non_pic_object=’foo.o’

On shared library systems, libtool automatically generates an additional PIC object by
inserting the appropriate PIC generation flags into the compilation command:

burger$ libtool --mode=compile gcc -g -O -c foo.c

mkdir .libs
gcc -g -O -c foo.c -fPIC -DPIC -o .libs/foo.o
gcc -g -O -c foo.c -o foo.o >/dev/null 2>&1
burger$

Note that Libtool automatically created ‘.libs’ directory upon its first execution, where
PIC library object files will be stored.

Since ‘burger’ supports shared libraries, and requires PIC objects to build them, Libtool
has compiled a PIC object this time, and made a note of it in the libtool object:

foo.lo - a libtool object file
Generated by ltmain.sh (GNU libtool) 2.2.6
#
Please DO NOT delete this file!
It is necessary for linking the library.

Name of the PIC object.
pic_object=’.libs/foo.o’

Name of the non-PIC object.

Chapter 3: Using libtool 6

non_pic_object=’foo.o’

Notice that the second run of GCC has its output discarded. This is done so that compiler
warnings aren’t annoyingly duplicated. If you need to see both sets of warnings (you might
have conditional code inside ‘#ifdef PIC’ for example), you can turn off suppression with
the ‘-no-suppress’ option to libtool’s compile mode:

burger$ libtool --mode=compile gcc -no-suppress -g -O -c hello.c

gcc -g -O -c hello.c -fPIC -DPIC -o .libs/hello.o
gcc -g -O -c hello.c -o hello.o
burger$

3.2 Linking libraries

Without libtool, the programmer would invoke the ar command to create a static library:

burger$ ar cru libhello.a hello.o foo.o

burger$

But of course, that would be too simple, so many systems require that you run the
ranlib command on the resulting library (to give it better karma, or something):

burger$ ranlib libhello.a

burger$

It seems more natural to use the C compiler for this task, given libtool’s “libraries are
programs” approach. So, on platforms without shared libraries, libtool simply acts as a
wrapper for the system ar (and possibly ranlib) commands.

Again, the libtool control file name (‘.la’ suffix) differs from the standard library name
(‘.a’ suffix). The arguments to libtool are the same ones you would use to produce an
executable named ‘libhello.la’ with your compiler (see Section 4.2 [Link mode], page 16):

a23$ libtool --mode=link gcc -g -O -o libhello.la foo.o hello.o

*** Warning: Linking the shared library libhello.la against the non-libtool
*** objects foo.o hello.o is not portable!
ar cru .libs/libhello.a
ranlib .libs/libhello.a
creating libhello.la
(cd .libs && rm -f libhello.la && ln -s ../libhello.la libhello.la)
a23$

Aha! Libtool caught a common error. . . trying to build a library from standard objects
instead of special ‘.lo’ object files. This doesn’t matter so much for static libraries, but on
shared library systems, it is of great importance. (Note that you may replace ‘libhello.la’
with ‘libhello.a’ in which case libtool won’t issue the warning any more. But although
this method works, this is not intended to be used because it makes you lose the benefits
of using Libtool.)

So, let’s try again, this time with the library object files. Remember also that we need
to add ‘-lm’ to the link command line because ‘foo.c’ uses the cos math library function
(see Chapter 3 [Using libtool], page 4).

Chapter 3: Using libtool 7

Another complication in building shared libraries is that we need to specify the path to
the directory in which they (eventually) will be installed (in this case, ‘/usr/local/lib’)1:

a23$ libtool --mode=link gcc -g -O -o libhello.la foo.lo hello.lo \

-rpath /usr/local/lib -lm

ar cru .libs/libhello.a foo.o hello.o
ranlib .libs/libhello.a
creating libhello.la
(cd .libs && rm -f libhello.la && ln -s ../libhello.la libhello.la)
a23$

Now, let’s try the same trick on the shared library platform:

burger$ libtool --mode=link gcc -g -O -o libhello.la foo.lo hello.lo \

-rpath /usr/local/lib -lm

rm -fr .libs/libhello.a .libs/libhello.la
ld -Bshareable -o .libs/libhello.so.0.0 .libs/foo.o .libs/hello.o -lm
ar cru .libs/libhello.a foo.o hello.o
ranlib .libs/libhello.a
creating libhello.la
(cd .libs && rm -f libhello.la && ln -s ../libhello.la libhello.la)
burger$

Now that’s significantly cooler. . . Libtool just ran an obscure ld command to create a
shared library, as well as the static library.

Note how libtool creates extra files in the ‘.libs’ subdirectory, rather than the current
directory. This feature is to make it easier to clean up the build directory, and to help
ensure that other programs fail horribly if you accidentally forget to use libtool when you
should.

Again, you may want to have a look at the ‘.la’ file in order to see what Libtool stores
in it. In particular, you will see that Libtool uses this file to remember the destination
directory for the library (the argument to ‘-rpath’) as well as the dependency on the math
library (‘-lm’).

3.3 Linking executables

If you choose at this point to install the library (put it in a permanent location) before
linking executables against it, then you don’t need to use libtool to do the linking. Simply
use the appropriate ‘-L’ and ‘-l’ flags to specify the library’s location.

Some system linkers insist on encoding the full directory name of each shared library in
the resulting executable. Libtool has to work around this misfeature by special magic to
ensure that only permanent directory names are put into installed executables.

The importance of this bug must not be overlooked: it won’t cause programs to crash
in obvious ways. It creates a security hole, and possibly even worse, if you are modifying
the library source code after you have installed the package, you will change the behaviour
of the installed programs!

1 If you don’t specify an rpath, then libtool builds a libtool convenience archive, not a shared library (see
Section 3.7 [Static libraries], page 12).

Chapter 3: Using libtool 8

So, if you want to link programs against the library before you install it, you must use
libtool to do the linking.

Here’s the old way of linking against an uninstalled library:
burger$ gcc -g -O -o hell.old main.o libhello.a -lm

burger$

Libtool’s way is almost the same2 (see Section 4.2 [Link mode], page 16):
a23$ libtool --mode=link gcc -g -O -o hell main.o libhello.la

gcc -g -O -o hell main.o ./.libs/libhello.a -lm
a23$

That looks too simple to be true. All libtool did was transform ‘libhello.la’ to
‘./.libs/libhello.a’, but remember that ‘a23’ has no shared libraries. Notice that
Libtool also remembered that ‘libhello.la’ depends on ‘-lm’, so even though we didn’t
specify ‘-lm’ on the libtool command line3 Libtool has added it to the gcc link line for us.

On ‘burger’ Libtool links against the uninstalled shared library:
burger$ libtool --mode=link gcc -g -O -o hell main.o libhello.la

gcc -g -O -o .libs/hell main.o -L./.libs -R/usr/local/lib -lhello -lm
creating hell
burger$

Now assume ‘libhello.la’ had already been installed, and you want to link a new
program with it. You could figure out where it lives by yourself, then run:

burger$ gcc -g -O -o test test.o -L/usr/local/lib -lhello -lm

However, unless ‘/usr/local/lib’ is in the standard library search path, you won’t be
able to run test. However, if you use libtool to link the already-installed libtool library, it
will do The Right Thing (TM) for you:

burger$ libtool --mode=link gcc -g -O -o test test.o \

/usr/local/lib/libhello.la

gcc -g -O -o .libs/test test.o -Wl,--rpath \
-Wl,/usr/local/lib /usr/local/lib/libhello.a -lm

creating test
burger$

Note that libtool added the necessary run-time path flag, as well as ‘-lm’, the library
libhello.la depended upon. Nice, huh?

Notice that the executable, hell, was actually created in the ‘.libs’ subdirectory. Then,
a wrapper script was created in the current directory.

Since libtool created a wrapper script, you should use libtool to install it and debug it
too. However, since the program does not depend on any uninstalled libtool library, it is
probably usable even without the wrapper script.

On NetBSD 1.2, libtool encodes the installation directory of ‘libhello’, by using the
‘-R/usr/local/lib’ compiler flag. Then, the wrapper script guarantees that the executable
finds the correct shared library (the one in ‘./.libs’) until it is properly installed.

2 However, you should avoid using ‘-L’ or ‘-l’ flags to link against an uninstalled libtool library. Just
specify the relative path to the ‘.la’ file, such as ‘../intl/libintl.la’. This is a design decision to
eliminate any ambiguity when linking against uninstalled shared libraries.

3 And why should we? ‘main.o’ doesn’t directly depend on ‘-lm’ after all.

Chapter 3: Using libtool 9

Let’s compare the two different programs:

burger$ time ./hell.old

Welcome to GNU Hell!
** This is not GNU Hello. There is no built-in mail reader. **

0.21 real 0.02 user 0.08 sys
burger$ time ./hell

Welcome to GNU Hell!
** This is not GNU Hello. There is no built-in mail reader. **

0.63 real 0.09 user 0.59 sys
burger$

The wrapper script takes significantly longer to execute, but at least the results are
correct, even though the shared library hasn’t been installed yet.

So, what about all the space savings that shared libraries are supposed to yield?

burger$ ls -l hell.old libhello.a

-rwxr-xr-x 1 gord gord 15481 Nov 14 12:11 hell.old
-rw-r--r-- 1 gord gord 4274 Nov 13 18:02 libhello.a
burger$ ls -l .libs/hell .libs/libhello.*

-rwxr-xr-x 1 gord gord 11647 Nov 14 12:10 .libs/hell
-rw-r--r-- 1 gord gord 4274 Nov 13 18:44 .libs/libhello.a
-rwxr-xr-x 1 gord gord 12205 Nov 13 18:44 .libs/libhello.so.0.0
burger$

Well, that sucks. Maybe I should just scrap this project and take up basket weaving.

Actually, it just proves an important point: shared libraries incur overhead because of
their (relative) complexity. In this situation, the price of being dynamic is eight kilobytes,
and the payoff is about four kilobytes. So, having a shared ‘libhello’ won’t be an advantage
until we link it against at least a few more programs.

3.4 Debugging executables

If ‘hell’ was a complicated program, you would certainly want to test and debug it before
installing it on your system. In the above section, you saw how the libtool wrapper script
makes it possible to run the program directly, but unfortunately, this mechanism interferes
with the debugger:

burger$ gdb hell

GDB is free software and you are welcome to distribute copies of it
under certain conditions; type "show copying" to see the conditions.
There is no warranty for GDB; type "show warranty" for details.
GDB 4.16 (i386-unknown-netbsd), (C) 1996 Free Software Foundation, Inc.

"hell": not in executable format: File format not recognized

(gdb) quit

burger$

Sad. It doesn’t work because GDB doesn’t know where the executable lives. So, let’s
try again, by invoking GDB directly on the executable:

Chapter 3: Using libtool 10

burger$ gdb .libs/hell

GNU gdb 5.3 (i386-unknown-netbsd)
Copyright 2002 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License,
and you are welcome to change it and/or distribute copies of it
under certain conditions. Type "show copying" to see the conditions.
There is no warranty for GDB. Type "show warranty" for details.
(gdb) break main

Breakpoint 1 at 0x8048547: file main.c, line 29.
(gdb) run

Starting program: /home/src/libtool/demo/.libs/hell
/home/src/libtool/demo/.libs/hell: can’t load library ’libhello.so.0’

Program exited with code 020.
(gdb) quit

burger$

Argh. Now GDB complains because it cannot find the shared library that ‘hell’ is
linked against. So, we must use libtool in order to properly set the library path and run
the debugger. Fortunately, we can forget all about the ‘.libs’ directory, and just run it on
the executable wrapper (see Section 4.3 [Execute mode], page 19):

burger$ libtool --mode=execute gdb hell

GNU gdb 5.3 (i386-unknown-netbsd)
Copyright 2002 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License,
and you are welcome to change it and/or distribute copies of it
under certain conditions. Type "show copying" to see the conditions.
There is no warranty for GDB. Type "show warranty" for details.
(gdb) break main

Breakpoint 1 at 0x8048547: file main.c, line 29.
(gdb) run

Starting program: /home/src/libtool/demo/.libs/hell

Breakpoint 1, main (argc=1, argv=0xbffffc40) at main.c:29
29 printf ("Welcome to GNU Hell!\n");
(gdb) quit

The program is running. Quit anyway (and kill it)? (y or n) y

burger$

3.5 Installing libraries

Installing libraries on a non-libtool system is quite straightforward. . . just copy them into
place:4

burger$ su

Password: ********

burger# cp libhello.a /usr/local/lib/libhello.a

4 Don’t strip static libraries though, or they will be unusable.

Chapter 3: Using libtool 11

burger#

Oops, don’t forget the ranlib command:

burger# ranlib /usr/local/lib/libhello.a

burger#

Libtool installation is quite simple, as well. Just use the install or cp command that
you normally would (see Section 4.4 [Install mode], page 19):

a23# libtool --mode=install cp libhello.la /usr/local/lib/libhello.la

cp libhello.la /usr/local/lib/libhello.la
cp .libs/libhello.a /usr/local/lib/libhello.a
ranlib /usr/local/lib/libhello.a
a23#

Note that the libtool library ‘libhello.la’ is also installed, to help libtool with unin-
stallation (see Section 4.6 [Uninstall mode], page 20) and linking (see Section 3.3 [Linking
executables], page 7) and to help programs with dlopening (see Chapter 10 [Dlopened mod-
ules], page 44).

Here is the shared library example:

burger# libtool --mode=install install -c libhello.la \

/usr/local/lib/libhello.la

install -c .libs/libhello.so.0.0 /usr/local/lib/libhello.so.0.0
install -c libhello.la /usr/local/lib/libhello.la
install -c .libs/libhello.a /usr/local/lib/libhello.a
ranlib /usr/local/lib/libhello.a
burger#

It is safe to specify the ‘-s’ (strip symbols) flag if you use a BSD-compatible install
program when installing libraries. Libtool will either ignore the ‘-s’ flag, or will run a
program that will strip only debugging and compiler symbols from the library.

Once the libraries have been put in place, there may be some additional configuration
that you need to do before using them. First, you must make sure that where the library
is installed actually agrees with the ‘-rpath’ flag you used to build it.

Then, running ‘libtool -n finish libdir ’ can give you further hints on what to do
(see Section 4.5 [Finish mode], page 20):

burger# libtool -n finish /usr/local/lib

PATH="$PATH:/sbin" ldconfig -m /usr/local/lib

Libraries have been installed in:

/usr/local/lib

To link against installed libraries in a given directory, LIBDIR,
you must use the ‘-LLIBDIR’ flag during linking.

You will also need to do one of the following:
- add LIBDIR to the ‘LD_LIBRARY_PATH’ environment variable
during execution

- add LIBDIR to the ‘LD_RUN_PATH’ environment variable

Chapter 3: Using libtool 12

during linking
- use the ‘-RLIBDIR’ linker flag

See any operating system documentation about shared libraries for
more information, such as the ld and ld.so manual pages.

burger#

After you have completed these steps, you can go on to begin using the installed libraries.
You may also install any executables that depend on libraries you created.

3.6 Installing executables

If you used libtool to link any executables against uninstalled libtool libraries (see Section 3.3
[Linking executables], page 7), you need to use libtool to install the executables after the
libraries have been installed (see Section 3.5 [Installing libraries], page 10).

So, for our Ultrix example, we would run:

a23# libtool --mode=install -c hell /usr/local/bin/hell
install -c hell /usr/local/bin/hell
a23#

On shared library systems that require wrapper scripts, libtool just ignores the wrapper
script and installs the correct binary:

burger# libtool --mode=install -c hell /usr/local/bin/hell
install -c .libs/hell /usr/local/bin/hell
burger#

3.7 Linking static libraries

Why return to ar and ranlib silliness when you’ve had a taste of libtool? Well, sometimes
it is desirable to create a static archive that can never be shared. The most frequent case is
when you have a set of object files that you use to build several different libraries. You can
create a “convenience library” out of those objects, and link against that with the other
libraries, instead of listing all the object files every time.

If you just want to link this convenience library into programs, then you could just
ignore libtool entirely, and use the old ar and ranlib commands (or the corresponding
gnu Automake ‘_LIBRARIES’ rules). You can even install a convenience library using gnu
Libtool, though you probably don’t want to and hence gnu Automake doesn’t allow you to
do so.

burger$ libtool --mode=install ./install-sh -c libhello.a \

/local/lib/libhello.a

./install-sh -c libhello.a /local/lib/libhello.a
ranlib /local/lib/libhello.a
burger$

Using libtool for static library installation protects your library from being accidentally
stripped (if the installer used the ‘-s’ flag), as well as automatically running the correct
ranlib command.

Chapter 3: Using libtool 13

But libtool libraries are more than just collections of object files: they can also carry
library dependency information, which old archives do not. If you want to create a libtool
static convenience library, you can omit the ‘-rpath’ flag and use ‘-static’ to indicate
that you’re only interested in a static library. When you link a program with such a library,
libtool will actually link all object files and dependency libraries into the program.

If you omit both ‘-rpath’ and ‘-static’, libtool will create a convenience library that
can be used to create other libtool libraries, even shared ones. Just like in the static case,
the library behaves as an alias to a set of object files and dependency libraries, but in this
case the object files are suitable for inclusion in shared libraries. But be careful not to link a
single convenience library, directly or indirectly, into a single program or library, otherwise
you may get errors about symbol redefinitions.

The key is remembering that a convenience library contains pic objects, and can be
linked where a list of pic objects makes sense; i.e. into a shared library. A static convenience
library contains non-pic objects, so can be linked into an old static library, or a program.

When gnu Automake is used, you should use noinst_LTLIBRARIES instead of lib_
LTLIBRARIES for convenience libraries, so that the ‘-rpath’ option is not passed when they
are linked.

As a rule of thumb, link a libtool convenience library into at most one libtool library,
and never into a program, and link libtool static convenience libraries only into programs,
and only if you need to carry library dependency information to the user of the static
convenience library.

Another common situation where static linking is desirable is in creating a standalone
binary. Use libtool to do the linking and add the ‘-all-static’ flag.

Chapter 4: Invoking libtool 14

4 Invoking libtool

The libtool program has the following synopsis:
libtool [option]... [mode-arg]...

and accepts the following options:

‘--config’
Display libtool configuration variables and exit.

‘--debug’ Dump a trace of shell script execution to standard output. This produces a lot
of output, so you may wish to pipe it to less (or more) or redirect to a file.

‘-n’
‘--dry-run’

Don’t create, modify, or delete any files, just show what commands would be
executed by libtool.

‘--features’
Display basic configuration options. This provides a way for packages to deter-
mine whether shared or static libraries will be built.

‘--finish’
Same as ‘--mode=finish’.

‘--help’ Display a help message and exit. If ‘--mode=mode ’ is specified, then detailed
help for mode is displayed.

‘--mode=mode ’
Use mode as the operation mode. When using libtool from the command line,
you can give just mode (or a unique abbreviation of it) as the first argument
as a shorthand for the full ‘--mode=mode ’.
mode must be set to one of the following:

‘compile’ Compile a source file into a libtool object.

‘execute’ Automatically set the library path so that another program can use
uninstalled libtool-generated programs or libraries.

‘finish’ Complete the installation of libtool libraries on the system.

‘install’ Install libraries or executables.

‘link’ Create a library or an executable.

‘uninstall’
Delete installed libraries or executables.

‘clean’ Delete uninstalled libraries or executables.

‘--tag=tag ’
Use configuration variables from tag tag (see Section 6.2 [Tags], page 35).

‘--preserve-dup-deps’
Do not remove duplicate dependencies in libraries. When building packages
with static libraries, the libraries may depend circularly on each other (shared

Chapter 4: Invoking libtool 15

libs can too, but for those it doesn’t matter), so there are situations, where -la
-lb -la is required, and the second -la may not be stripped or the link will fail.
In cases where these duplications are required, this option will preserve them,
only stripping the libraries that libtool knows it can safely.

‘--quiet’
‘--silent’

Do not print out any progress or informational messages.

‘-v’
‘--verbose’

Print out progress and informational messages (enabled by default).

‘--version’
Print libtool version information and exit.

The mode-args are a variable number of arguments, depending on the selected operation
mode. In general, each mode-arg is interpreted by programs libtool invokes, rather than
libtool itself.

4.1 Compile mode

For compile mode, mode-args is a compiler command to be used in creating a “standard”
object file. These arguments should begin with the name of the C compiler, and contain
the ‘-c’ compiler flag so that only an object file is created.

Libtool determines the name of the output file by removing the directory component
from the source file name, then substituting the source code suffix (e.g. ‘.c’ for C source
code) with the library object suffix, ‘.lo’.

If shared libraries are being built, any necessary PIC generation flags are substituted
into the compilation command.

The following components of mode-args are treated specially:

‘-o’ Note that the ‘-o’ option is now fully supported. It is emulated on the platforms
that don’t support it (by locking and moving the objects), so it is really easy
to use libtool, just with minor modifications to your Makefiles. Typing for
example

libtool --mode=compile gcc -c foo/x.c -o foo/x.lo

will do what you expect.
Note, however, that, if the compiler does not support ‘-c’ and ‘-o’, it is impos-
sible to compile ‘foo/x.c’ without overwriting an existing ‘./x.o’. Therefore,
if you do have a source file ‘./x.c’, make sure you introduce dependencies
in your ‘Makefile’ to make sure ‘./x.o’ (or ‘./x.lo’) is re-created after any
sub-directory’s ‘x.lo’:

x.o x.lo: foo/x.lo bar/x.lo

This will also ensure that make won’t try to use a temporarily corrupted ‘x.o’ to
create a program or library. It may cause needless recompilation on platforms
that support ‘-c’ and ‘-o’ together, but it’s the only way to make it safe for
those that don’t.

Chapter 4: Invoking libtool 16

‘-no-suppress’
If both PIC and non-PIC objects are being built, libtool will normally suppress
the compiler output for the PIC object compilation to save showing very similar,
if not identical duplicate output for each object. If the ‘-no-suppress’ option
is given in compile mode, libtool will show the compiler output for both objects.

‘-prefer-pic’
Libtool will try to build only PIC objects.

‘-prefer-non-pic’
Libtool will try to build only non-PIC objects.

‘-shared’ Even if Libtool was configured with ‘--enable-static’, the object file Libtool
builds will not be suitable for static linking. Libtool will signal an error if it
was configured with ‘--disable-shared’, or if the host does not support shared
libraries.

‘-static’ Even if libtool was configured with ‘--disable-static’, the object file Libtool
builds will be suitable for static linking.

‘-Wc,flag ’
‘-Xcompiler flag ’

Pass a linker specific flag directly to the compiler.

‘-Wl,flag ’
‘-Xlinker flag ’

Pass a linker specific flag directly to the linker.

‘-XCClinker flag ’
Pass a link specific flag to the compiler driver (CC) during linking.

4.2 Link mode

Link mode links together object files (including library objects) to form another library or
to create an executable program.

mode-args consist of a command using the C compiler to create an output file (with the
‘-o’ flag) from several object files.

The following components of mode-args are treated specially:

‘-all-static’
If output-file is a program, then do not link it against any shared libraries at all.
If output-file is a library, then only create a static library. In general, this flag
cannot be used together with ‘disable-static’ (see Section 5.4.1 [LT INIT],
page 25).

‘-avoid-version’
Tries to avoid versioning (see Chapter 7 [Versioning], page 37) for libraries and
modules, i.e. no version information is stored and no symbolic links are created.
If the platform requires versioning, this option has no effect.

‘-dlopen file ’
Same as ‘-dlpreopen file ’, if native dlopening is not supported on the host
platform (see Chapter 10 [Dlopened modules], page 44) or if the program is

Chapter 4: Invoking libtool 17

linked with ‘-static’, ‘-static-libtool-libs’, or ‘-all-static’. Otherwise,
no effect. If file is self Libtool will make sure that the program can dlopen
itself, either by enabling ‘-export-dynamic’ or by falling back to ‘-dlpreopen
self’.

‘-dlpreopen file ’
Link file into the output program, and add its symbols to the list of preloaded
symbols (see Section 10.2 [Dlpreopening], page 44). If file is self, the symbols
of the program itself will be added to preloaded symbol lists. If file is force
Libtool will make sure that a preloaded symbol list is always defined, regardless
of whether it’s empty or not.

‘-export-dynamic’
Allow symbols from output-file to be resolved with dlsym (see Chapter 10
[Dlopened modules], page 44).

‘-export-symbols symfile ’
Tells the linker to export only the symbols listed in symfile. The symbol file
should end in ‘.sym’ and must contain the name of one symbol per line. This
option has no effect on some platforms. By default all symbols are exported.

‘-export-symbols-regex regex ’
Same as ‘-export-symbols’, except that only symbols matching the regular
expression regex are exported. By default all symbols are exported.

‘-Llibdir ’
Search libdir for required libraries that have already been installed.

‘-lname ’ output-file requires the installed library ‘libname ’. This option is required even
when output-file is not an executable.

‘-module’ Creates a library that can be dlopened (see Chapter 10 [Dlopened modules],
page 44). This option doesn’t work for programs. Module names don’t need to
be prefixed with ‘lib’. In order to prevent name clashes, however, ‘libname ’
and ‘name ’ must not be used at the same time in your package.

‘-no-fast-install’
Disable fast-install mode for the executable output-file. Useful if the program
won’t be necessarily installed.

‘-no-install’
Link an executable output-file that can’t be installed and therefore doesn’t need
a wrapper script on systems that allow hardcoding of library paths. Useful if
the program is only used in the build tree, e.g., for testing or generating other
files.

‘-no-undefined’
Declare that output-file does not depend on any other libraries. Some platforms
cannot create shared libraries that depend on other libraries (see Chapter 9
[Inter-library dependencies], page 43).

‘-o output-file ’
Create output-file from the specified objects and libraries.

Chapter 4: Invoking libtool 18

‘-objectlist file ’
Use a list of object files found in file to specify objects.

‘-precious-files-regex regex ’
Prevents removal of files from the temporary output directory whose names
match this regular expression. You might specify ‘\.bbg?$’ to keep those files
created with gcc -ftest-coverage for example.

‘-release release ’
Specify that the library was generated by release release of your package, so
that users can easily tell which versions are newer than others. Be warned
that no two releases of your package will be binary compatible if you use this
flag. If you want binary compatibility, use the ‘-version-info’ flag instead
(see Chapter 7 [Versioning], page 37).

‘-rpath libdir ’
If output-file is a library, it will eventually be installed in libdir. If output-file
is a program, add libdir to the run-time path of the program.

‘-R libdir ’
If output-file is a program, add libdir to its run-time path. If output-file is a
library, add ‘-Rlibdir ’ to its dependency libs, so that, whenever the library is
linked into a program, libdir will be added to its run-time path.

‘-shared’ If output-file is a program, then link it against any uninstalled shared libtool
libraries (this is the default behavior). If output-file is a library, then only
create a shared library. In the later case, libtool will signal an error if it was
configured with ‘--disable-shared’, or if the host does not support shared
libraries.

‘-shrext suffix ’
If output-file is a libtool library, replace the system’s standard file name exten-
sion for shared libraries with suffix (most systems use ‘.so’ here). This option
is helpful in certain cases where an application requires that shared libraries
(typically modules) have an extension other than the default one. Please note
you must supply the full file name extension including any leading dot.

‘-static’ If output-file is a program, then do not link it against any uninstalled shared
libtool libraries. If output-file is a library, then only create a static library.

‘-static-libtool-libs’
If output-file is a program, then do not link it against any shared libtool li-
braries. If output-file is a library, then only create a static library.

‘-version-info current[:revision[:age]]’
If output-file is a libtool library, use interface version information current, revi-
sion, and age to build it (see Chapter 7 [Versioning], page 37). Do not use this
flag to specify package release information, rather see the ‘-release’ flag.

‘-version-number major[:minor[:revision]]’
If output-file is a libtool library, compute interface version information so that
the resulting library uses the specified major, minor and revision numbers. This

Chapter 4: Invoking libtool 19

is designed to permit libtool to be used with existing projects where identical
version numbers are already used across operating systems. New projects should
use the ‘-version-info’ flag instead.

‘-weak libname ’
if output-file is a libtool library, declare that it provides a weak libname inter-
face. This is a hint to libtool that there is no need to append libname to the
list of dependency libraries of output-file, because linking against output-file
already supplies the same interface (see Section 10.3 [Linking with dlopened
modules], page 47).

‘-Wl,flag ’
‘-Xlinker flag ’

Pass a linker specific flag directly to the linker.

‘-XCClinker flag ’
Pass a link specific flag to the compiler driver (CC) during linking.

If the output-file ends in ‘.la’, then a libtool library is created, which must be built
only from library objects (‘.lo’ files). The ‘-rpath’ option is required. In the current
implementation, libtool libraries may not depend on other uninstalled libtool libraries (see
Chapter 9 [Inter-library dependencies], page 43).

If the output-file ends in ‘.a’, then a standard library is created using ar and possibly
ranlib.

If output-file ends in ‘.o’ or ‘.lo’, then a reloadable object file is created from the input
files (generally using ‘ld -r’). This method is often called partial linking.

Otherwise, an executable program is created.

4.3 Execute mode

For execute mode, the library path is automatically set, then a program is executed.

The first of the mode-args is treated as a program name, with the rest as arguments to
that program.

The following components of mode-args are treated specially:

‘-dlopen file ’
Add the directory containing file to the library path.

This mode sets the library path environment variable according to any ‘-dlopen’ flags.

If any of the args are libtool executable wrappers, then they are translated into the name
of their corresponding uninstalled binary, and any of their required library directories are
added to the library path.

4.4 Install mode

In install mode, libtool interprets most of the elements of mode-args as an installation
command beginning with cp, or a BSD-compatible install program.

The following components of mode-args are treated specially:

Chapter 4: Invoking libtool 20

‘-inst-prefix inst-prefix-dir ’
When installing into a temporary staging area, rather than the final prefix,
this argument is used to reflect the temporary path, in much the same way
automake uses DESTDIR. For instance, if prefix is ‘/usr/local’, but inst-
prefix-dir is ‘/tmp’, then the object will be installed under ‘/tmp/usr/local/’.
If the installed object is a libtool library, then the internal fields of that library
will reflect only prefix, not inst-prefix-dir:

Directory that this library needs to be installed in:
libdir=’/usr/local/lib’

not

Directory that this library needs to be installed in:
libdir=’/tmp/usr/local/lib’

inst-prefix is also used to insure that if the installed object must be re-
linked upon installation, that it is relinked against the libraries in inst-prefix-
dir/prefix, not prefix.

In truth, this option is not really intended for use when calling libtool di-
rectly; it is automatically used when libtool --mode=install calls libtool
--mode=relink. Libtool does this by analyzing the destination path given in
the original libtool --mode=install command and comparing it to the ex-
pected installation path established during libtool --mode=link.

Thus, end-users need change nothing, and automake-style make install
DESTDIR=/tmp will Just Work(tm) most of the time. For systems where fast
installation can not be turned on, relinking may be needed. In this case, a
‘DESTDIR’ install will fail.

Currently it is not generally possible to install into a temporary staging area
that contains needed third-party libraries which are not yet visible at their final
location.

The rest of the mode-args are interpreted as arguments to the cp or install command.

The command is run, and any necessary unprivileged post-installation commands are
also completed.

4.5 Finish mode

Finish mode helps system administrators install libtool libraries so that they can be located
and linked into user programs.

Each mode-arg is interpreted as the name of a library directory. Running this command
may require superuser privileges, so the ‘--dry-run’ option may be useful.

4.6 Uninstall mode

Uninstall mode deletes installed libraries, executables and objects.

The first mode-arg is the name of the program to use to delete files (typically /bin/rm).

The remaining mode-args are either flags for the deletion program (beginning with a
‘-’), or the names of files to delete.

Chapter 4: Invoking libtool 21

4.7 Clean mode

Clean mode deletes uninstalled libraries, executables, objects and libtool’s temporary files
associated with them.

The first mode-arg is the name of the program to use to delete files (typically /bin/rm).
The remaining mode-args are either flags for the deletion program (beginning with a

‘-’), or the names of files to delete.

Chapter 5: Integrating libtool with your package 22

5 Integrating libtool with your package

This chapter describes how to integrate libtool with your packages so that your users can
install hassle-free shared libraries.

5.1 Autoconf macros exported by libtool

Libtool uses a number of macros to interrogate the host system when it is being built, and
you can use some of them yourself too. Although there are a great many other macros
in the libtool installed m4 files, these do not form part of the published interface, and are
subject to change between releases.
Macros in the ‘LT_CMD_’ namespace check for various shell commands:

[Macro]LT_CMD_MAX_LEN
Finds the longest command line that can be safely passed to ‘$SHELL’ without being
truncated, and store in the shell variable ‘$max_cmd_len’. It is only an approximate
value, but command lines of this length or shorter are guaranteed not to be truncated.

Macros in the ‘LT_FUNC_’ namespace check characteristics of library functions:

[Macro]LT_FUNC_DLSYM_USCORE
‘AC_DEFINE’ the preprocessor symbol ‘DLSYM_USCORE’ if we have to add an underscore
to symbol-names passed in to ‘dlsym’.

Macros in the ‘LT_LIB_’ namespace check characteristics of system libraries:

[Macro]LT_LIB_M
Set ‘LIBM’ to the math library or libraries required on this machine, if any.

[Macro]LT_LIB_DLLOAD
This is the macro used by ‘libltdl’ to determine which dlloaders to use on this
machine, if any. Several shell variables are set (and ‘AC_SUBST’ed) depending on the
dlload interfaces are available on this machine. ‘LT_DLLOADERS’ contains a list of
libtool libraries that can be used, and if necessary also sets ‘LIBADD_DLOPEN’ if addi-
tional system libraries are required by the ‘dlopen’ loader, and ‘LIBADD_SHL_LOAD’
if additional system libraries are required by the ‘shl_load’ loader, respectively. Fi-
nally some symbols are set in ‘config.h’ depending on the loaders that are found to
work: ‘HAVE_LIBDL’, ‘HAVE_SHL_LOAD’, ‘HAVE_DYLD’, ‘HAVE_DLD’.

Macros in the ‘LT_PATH_’ namespace search the system for the full path to particular system
commands:

[Macro]LT_PATH_LD
Add a ‘--with-gnu-ld’ option to ‘configure’. Try to find the path to the linker used
by ‘$CC’, and whether it is the gnu linker. The result is stored in the shell variable
‘$LD’, which is AC_SUBSTed.

[Macro]LT_PATH_NM
Try to find a bsd compatible nm or a ms compatible dumpbin command on this
machine. The result is stored in the shell variable ‘$NM’, which is AC_SUBSTed.

Chapter 5: Integrating libtool with your package 23

Macros in the ‘LT_SYS_’ namespace probe for system characteristics:

[Macro]LT_SYS_DLOPEN_SELF
Tests whether a program can dlopen itself, and then also whether the same program
can still dlopen itself when statically linked. Results are stored in the shell variables
‘$enable_dlopen_self’ and ‘enable_dlopen_self_static’ respectively.

[Macro]LT_SYS_DLOPEN_DEPLIBS
Define the preprocessor symbol ‘LTDL_DLOPEN_DEPLIBS’ if the os needs help to load
dependent libraries for ‘dlopen’ (or equivalent).

[Macro]LT_SYS_DLSEARCH_PATH
Define the preprocessor symbol ‘LT_DLSEARCH_PATH’ to the system default library
search path.

[Macro]LT_SYS_MODULE_EXT
Define the preprocessor symbol ‘LT_MODULE_EXT’ to the extension used for runtime
loadable modules. If you use libltdl to open modules, then you can simply use the
libtool library extension, ‘.la’.

[Macro]LT_SYS_MODULE_PATH
Define the preprocessor symbol ‘LT_MODULE_PATH_VAR’ to the name of the shell envi-
ronment variable that determines the run-time module search path.

[Macro]LT_SYS_SYMBOL_USCORE
Set the shell variable ‘sys_symbol_underscore’ to ‘no’ unless the compiler prefixes
global symbols with an underscore.

5.2 Writing ‘Makefile’ rules for libtool

Libtool is fully integrated with Automake (see section “Introduction” in The Automake
Manual), starting with Automake version 1.2.

If you want to use libtool in a regular ‘Makefile’ (or ‘Makefile.in’), you are on your
own. If you’re not using Automake, and you don’t know how to incorporate libtool into
your package you need to do one of the following:

1. Download the latest Automake distribution from your nearest gnu mirror, install it,
and start using it.

2. Learn how to write ‘Makefile’ rules by hand. They’re sometimes complex, but if
you’re clever enough to write rules for compiling your old libraries, then you should be
able to figure out new rules for libtool libraries (hint: examine the ‘Makefile.in’ in
the ‘tests/demo’ subdirectory of the libtool distribution. . . note especially that it was
automatically generated from the ‘Makefile.am’ by Automake).

5.3 Using Automake with libtool

Libtool library support is implemented under the ‘LTLIBRARIES’ primary.

Here are some samples from the Automake ‘Makefile.am’ in the libtool distribution’s
‘demo’ subdirectory.

Chapter 5: Integrating libtool with your package 24

First, to link a program against a libtool library, just use the ‘program_LDADD’1 variable:

bin_PROGRAMS = hell hell_static

Build hell from main.c and libhello.la
hell_SOURCES = main.c
hell_LDADD = libhello.la

Create a statically linked version of hell.
hell_static_SOURCES = main.c
hell_static_LDADD = libhello.la
hell_static_LDFLAGS = -static

You may use the ‘program_LDFLAGS’ variable to stuff in any flags you want to pass to
libtool while linking ‘program’ (such as ‘-static’ to avoid linking uninstalled shared libtool
libraries).

Building a libtool library is almost as trivial. . . note the use of ‘libhello_la_LDFLAGS’
to pass the ‘-version-info’ (see Chapter 7 [Versioning], page 37) option to libtool:

Build a libtool library, libhello.la for installation in libdir.
lib_LTLIBRARIES = libhello.la
libhello_la_SOURCES = hello.c foo.c
libhello_la_LDFLAGS = -version-info 3:12:1

The ‘-rpath’ option is passed automatically by Automake (except for libraries listed as
noinst_LTLIBRARIES), so you should not specify it.

See section “The Automake Manual” in The Automake Manual, for more information.

5.4 Configuring libtool

Libtool requires intimate knowledge of your compiler suite and operating system in order
to be able to create shared libraries and link against them properly. When you install the
libtool distribution, a system-specific libtool script is installed into your binary directory.

However, when you distribute libtool with your own packages (see Section 5.5 [Distribut-
ing], page 31), you do not always know the compiler suite and operating system that are
used to compile your package.

For this reason, libtool must be configured before it can be used. This idea should be
familiar to anybody who has used a gnu configure script. configure runs a number of
tests for system features, then generates the ‘Makefile’s (and possibly a ‘config.h’ header
file), after which you can run make and build the package.

Libtool adds its own tests to your configure script in order to generate a libtool script
for the installer’s host machine.

1 Since gnu Automake 1.5, the flags ‘-dlopen’ or ‘-dlpreopen’ (see Section 4.2 [Link mode], page 16)
can be employed with the program LDADD variable. Unfortunately, older releases didn’t accept these
flags, so if you are stuck with an ancient Automake, we recommend quoting the flag itself, and setting
program DEPENDENCIES too:

program_LDADD = "-dlopen" libfoo.la

program_DEPENDENCIES = libfoo.la

Chapter 5: Integrating libtool with your package 25

5.4.1 The LT_INIT macro

If you are using gnu Autoconf (or Automake), you should add a call to LT_INIT to your
‘configure.ac’ file. This macro adds many new tests to the configure script so that
the generated libtool script will understand the characteristics of the host. It’s the most
important of a number of macros defined by Libtool:

[Macro]LT_PREREQ (VERSION)
Ensure that a recent enough version of Libtool is being used. If the version of Libtool
used for LT_INIT is earlier than version, print an error message to the standard error
output and exit with failure (exit status is 63). For example:

LT_PREREQ([2.2.6])

[Macro]LT_INIT (OPTIONS)
[Macro]AC_PROG_LIBTOOL
[Macro]AM_PROG_LIBTOOL

Add support for the ‘--enable-shared’ and ‘--disable-shared’ configure flags.2

AC_PROG_LIBTOOL and AM_PROG_LIBTOOL are deprecated names for older versions of
this macro; autoupdate will upgrade your ‘configure.ac’ files.

By default, this macro turns on shared libraries if they are available, and also enables
static libraries if they don’t conflict with the shared libraries. You can modify these
defaults by passing either disable-shared or disable-static in the option list to
LT_INIT, or using AC_DISABLE_SHARED or AC_DISABLE_STATIC.

Turn off shared libraries during beta-testing, since they
make the build process take too long.
LT_INIT([disable-shared])

The user may specify modified forms of the configure flags ‘--enable-shared’ and
‘--enable-static’ to choose whether shared or static libraries are built based on the
name of the package. For example, to have shared ‘bfd’ and ‘gdb’ libraries built, but
not shared ‘libg++’, you can run all three configure scripts as follows:

trick$./configure --enable-shared=bfd,gdb

In general, specifying ‘--enable-shared=pkgs ’ is the same as configuring with
‘--enable-shared’ every package named in the comma-separated pkgs list, and
every other package with ‘--disable-shared’. The ‘--enable-static=pkgs ’
flag behaves similarly, but it uses ‘--enable-static’ and ‘--disable-static’.
The same applies to the ‘--enable-fast-install=pkgs ’ flag, which uses
‘--enable-fast-install’ and ‘--disable-fast-install’.

The package name ‘default’ matches any packages that have not set their name in
the PACKAGE environment variable.

This macro also sets the shell variable LIBTOOL DEPS, that you can use to auto-
matically update the libtool script if it becomes out-of-date. In order to do that, add
to your ‘configure.ac’:

2 LT_INIT requires that you define the ‘Makefile’ variable top_builddir in your ‘Makefile.in’. Automake
does this automatically, but Autoconf users should set it to the relative path to the top of your build
directory (‘../..’, for example).

Chapter 5: Integrating libtool with your package 26

LT_INIT
AC_SUBST([LIBTOOL_DEPS])

and, to ‘Makefile.in’ or ‘Makefile.am’:
LIBTOOL_DEPS = @LIBTOOL_DEPS@
libtool: $(LIBTOOL_DEPS)

$(SHELL) ./config.status --recheck

If you are using gnu Automake, you can omit the assignment, as Automake will take
care of it. You’ll obviously have to create some dependency on ‘libtool’.
Aside from disable-static and disable-shared, there are other options that you
can pass to LT_INIT to modify its behaviour. Here is a full list:

‘dlopen’ Enable checking for dlopen support. This option should be used if the
package makes use of the ‘-dlopen’ and ‘-dlpreopen’ libtool flags, oth-
erwise libtool will assume that the system does not support dlopening.

‘win32-dll’
This option should be used if the package has been ported to build
clean dlls on win32 platforms. Usually this means that any library data
items are exported with __declspec(dllexport) and imported with __
declspec(dllimport). If this macro is not used, libtool will assume that
the package libraries are not dll clean and will build only static libraries
on win32 hosts.
Provision must be made to pass ‘-no-undefined’ to libtool in link mode
from the package Makefile. Naturally, if you pass ‘-no-undefined’, you
must ensure that all the library symbols really are defined at link time!

‘disable-fast-install’
Change the default behaviour for LT_INIT to disable optimization for
fast installation. The user may still override this default, depending on
platform support, by specifying ‘--enable-fast-install’ to configure.

‘shared’ Change the default behaviour for LT_INIT to enable shared libraries.
This is the default on all systems where Libtool knows how to create
shared libraries. The user may still override this default by specifying
‘--disable-shared’ to configure.

‘disable-shared’
Change the default behaviour for LT_INIT to disable shared libraries.
The user may still override this default by specifying ‘--enable-shared’
to configure.

‘static’ Change the default behaviour for LT_INIT to enable static libraries. This
is the default on all systems where shared libraries have been disabled
for some reason, and on most systems where shared libraries have been
enabled. If shared libraries are enabled, the user may still override this
default by specifying ‘--disable-static’ to configure.

‘disable-static’
Change the default behaviour for LT_INIT to disable static libraries. The
user may still override this default by specifying ‘--enable-static’ to
configure.

Chapter 5: Integrating libtool with your package 27

‘pic-only’
Change the default behaviour for libtool to try to use only pic objects.
The user may still override this default by specifying ‘--without-pic’ to
configure.

‘no-pic’ Change the default behaviour of libtool to try to use only non-pic ob-
jects. The user may still override this default by specifying ‘--with-pic’
to configure.

[Macro]LT_LANG (LANGUAGE)
Enable libtool support for the language given if it has not yet already been enabled.
Languages accepted are “C++”, “Fortran 77”, “Java” and “Windows Resource”.

If Autoconf language support macros such as AC_PROG_CXX are used in your
‘configure.ac’, Libtool language support will automatically be enabled.

Conversely using LT_LANG to enable language support for Libtool will automatically
enable Autoconf language support as well.

Both of the following examples are therefore valid ways of adding C++ language sup-
port to Libtool.

LT_INIT
LT_LANG([C++])

LT_INIT
AC_PROG_CXX

[Macro]AC_LIBTOOL_DLOPEN
This macro is deprecated, the ‘dlopen’ option to LT_INIT should be used instead.

[Macro]AC_LIBTOOL_WIN32_DLL
This macro is deprecated, the ‘win32-dll’ option to LT_INIT should be used instead.

[Macro]AC_DISABLE_FAST_INSTALL
This macro is deprecated, the ‘disable-fast-install’ option to LT_INIT should be
used instead.

[Macro]AC_DISABLE_SHARED
[Macro]AM_DISABLE_SHARED

Change the default behaviour for LT_INIT to disable shared libraries. The user
may still override this default by specifying ‘--enable-shared’. The option
‘disable-shared’ to LT_INIT is a shorthand for this. AM_DISABLE_SHARED is a
deprecated alias for AC_DISABLE_SHARED.

[Macro]AC_ENABLE_SHARED
[Macro]AM_ENABLE_SHARED

Change the default behaviour for LT_INIT to enable shared libraries. This is the
default on all systems where Libtool knows how to create shared libraries. The user
may still override this default by specifying ‘--disable-shared’. The option ‘shared’
to LT_INIT is a shorthand for this. AM_ENABLE_SHARED is a deprecated alias for AC_
ENABLE_SHARED.

Chapter 5: Integrating libtool with your package 28

[Macro]AC_DISABLE_STATIC
[Macro]AM_DISABLE_STATIC

Change the default behaviour for LT_INIT to disable static libraries. The user
may still override this default by specifying ‘--enable-static’. The option
‘disable-static’ to LT_INIT is a shorthand for this. AM_DISABLE_STATIC is a
deprecated alias for AC_DISABLE_STATIC.

[Macro]AC_ENABLE_STATIC
[Macro]AM_ENABLE_STATIC

Change the default behaviour for LT_INIT to enable static libraries. This is the default
on all systems where shared libraries have been disabled for some reason, and on most
systems where shared libraries have been enabled. If shared libraries are enabled, the
user may still override this default by specifying ‘--disable-static’. The option
‘static’ to LT_INIT is a shorthand for this. AM_ENABLE_STATIC is a deprecated alias
for AC_ENABLE_STATIC.

The tests in LT_INIT also recognize the following environment variables:

[Variable]CC
The C compiler that will be used by the generated libtool. If this is not set, LT_INIT
will look for gcc or cc.

[Variable]CFLAGS
Compiler flags used to generate standard object files. If this is not set, LT_INIT will
not use any such flags. It affects only the way LT_INIT runs tests, not the produced
libtool.

[Variable]CPPFLAGS
C preprocessor flags. If this is not set, LT_INIT will not use any such flags. It affects
only the way LT_INIT runs tests, not the produced libtool.

[Variable]LD
The system linker to use (if the generated libtool requires one). If this is not set,
LT_INIT will try to find out what is the linker used by CC.

[Variable]LDFLAGS
The flags to be used by libtool when it links a program. If this is not set, LT_
INIT will not use any such flags. It affects only the way LT_INIT runs tests, not the
produced libtool.

[Variable]LIBS
The libraries to be used by LT_INIT when it links a program. If this is not set, LT_
INIT will not use any such flags. It affects only the way LT_INIT runs tests, not the
produced libtool.

[Variable]NM
Program to use rather than checking for nm.

[Variable]RANLIB
Program to use rather than checking for ranlib.

Chapter 5: Integrating libtool with your package 29

[Variable]LN_S
A command that creates a link of a program, a soft-link if possible, a hard-link
otherwise. LT_INIT will check for a suitable program if this variable is not set.

[Variable]DLLTOOL
Program to use rather than checking for dlltool. Only meaningful for Cygwin/MS-
Windows.

[Variable]OBJDUMP
Program to use rather than checking for objdump. Only meaningful for Cygwin/MS-
Windows.

[Variable]AS
Program to use rather than checking for as. Only used on Cygwin/MS-Windows at
the moment.

With 1.3 era libtool, if you wanted to know any details of what libtool had discovered
about your architecture and environment, you had to run the script with ‘--config’ and
grep through the results. This idiom was supported up to and including 1.5.x era libtool,
where it was possible to call the generated libtool script from ‘configure.ac’ as soon as
LT_INIT had completed. However, one of the features of libtool 1.4 was that the libtool con-
figuration was migrated out of a separate ‘ltconfig’ file, and added to the LT_INIT macro
(nee AC_PROG_LIBTOOL), so the results of the configuration tests were available directly to
code in ‘configure.ac’, rendering the call out to the generated libtool script obsolete.

Starting with libtool 2.0, the multipass generation of the libtool script has been
consolidated into a single ‘config.status’ pass, which happens after all the code in
‘configure.ac’ has completed. The implication of this is that the libtool script does not
exist during execution of code from ‘configure.ac’, and so obviously it cannot be called
for ‘--config’ details anymore. If you are upgrading projects that used this idiom to
libtool 2.0 or newer, you should replace those calls with direct references to the equivalent
Autoconf shell variables that are set by the configure time tests before being passed to
‘config.status’ for inclusion in the generated libtool script.

[Macro]LT_OUTPUT
By default, the configured ‘libtool’ script is generated by the call to AC_OUTPUT
command, and there is rarely any need to use ‘libtool’ from ‘configure’. However,
sometimes it is necessary to run configure time compile and link tests using ‘libtool’.
You can add LT_OUTPUT to your ‘configure.ac’ any time after LT_INIT and any LT_
LANG calls; that done, ‘libtool’ will be created by a specially generated ‘config.lt’
file, and available for use in later tests.
Also, when LT_OUTPUT is used, for backwards compatibility with Automake regen-
eration rules, ‘config.status’ will call ‘config.lt’ to regenerate ‘libtool’, rather
than generating the file itself.

When you invoke the libtoolize program (see Section 5.5.1 [Invoking libtoolize],
page 31), it will tell you where to find a definition of LT_INIT. If you use Automake, the
aclocal program will automatically add LT_INIT support to your ‘configure’ script
when it sees the invocation of LT_INIT in ‘configure.ac’.

Chapter 5: Integrating libtool with your package 30

Because of these changes, and the runtime version compatibility checks Libtool
now executes, we now advise against including a copy of ‘libtool.m4’ (and brethren)
in ‘acinclude.m4’. Instead, you should set your project macro directory with
AC_CONFIG_MACRO_DIR. When you libtoolize your project, a copy of the relevant macro
definitions will be placed in your AC_CONFIG_MACRO_DIR, where aclocal can reference
them directly from ‘aclocal.m4’.

5.4.2 Platform-specific configuration notes

While Libtool tries to hide as many platform-specific features as possible, some have to be
taken into account when configuring either the Libtool package or a libtoolized package.
• You currently need GNU make to build the Libtool package itself.
• On AIX there are two different styles of shared linking, one in which symbols are bound

at link-time and one in which symbols are bound at runtime only, similar to ELF. In
case of doubt use LDFLAGS=-Wl,-brtl for the latter style.

• On AIX, native tools are to be preferred over binutils; especially for C++ code,
if using the AIX Toolbox GCC 4.0 and binutils, configure with AR=/usr/bin/ar
LD=/usr/bin/ld NM=’/usr/bin/nm -B’.

• On AIX, the /bin/sh is very slow due to its inefficient handling of here-documents. A
modern shell is preferable:

CONFIG_SHELL=/bin/bash; export $CONFIG_SHELL
$CONFIG_SHELL ./configure [...]

• For C++ code with templates, it may be necessary to specify the way the compiler
will generate the instantiations. For Portland pgCC version5, use CXX=’pgCC --one_
instantiation_per_object’ and avoid parallel make.

• On Darwin, for C++ code with templates you need two level shared libraries. Libtool
builds these by default if MACOSX_DEPLOYMENT_TARGET is set to 10.3 or later at
configure time. See rdar://problem/4135857 for more information on this issue.

• The default shell on UNICOS 9, a ksh 88e variant, is too buggy to correctly execute
the libtool script. Users are advised to install a modern shell such as GNU bash.

• Some HP-UX sed programs are horribly broken, and cannot handle libtool’s require-
ments, so users may report unusual problems. There is no workaround except to install
a working sed (such as GNU sed) on these systems.

• The vendor-distributed NCR MP-RAS cc programs emits copyright on standard error
that confuse tests on size of ‘conftest.err’. The workaround is to specify CC when
run configure with CC=’cc -Hnocopyr’.

• Any earlier DG/UX system with ELF executables, such as R3.10 or R4.10, is also likely
to work, but hasn’t been explicitly tested.

• On Reliant Unix libtool has only been tested with the Siemens C-compiler and an old
version of gcc provided by Marco Walther.

• ‘libtool.m4’, ‘ltdl.m4’ and the ‘configure.ac’ files are marked to use autoconf-
mode, which is distributed with GNU Emacs 21, Autoconf itself, and all recent releases
of XEmacs.

• When building on some linux systems for multilib targets libtool sometimes guesses
the wrong paths that the linker and dynamic linker search by default. If this occurs, you

rdar://problem/4135857

Chapter 5: Integrating libtool with your package 31

may override libtool’s guesses at configure time by setting the autoconf cache vari-
ables lt_cv_sys_lib_search_path_spec and lt_cv_sys_lib_dlsearch_path_spec
respectively to the correct search paths.

5.5 Including libtool in your package

In order to use libtool, you need to include the following files with your package:

‘config.guess’
Attempt to guess a canonical system name.

‘config.sub’
Canonical system name validation subroutine script.

‘install-sh’
BSD-compatible install replacement script.

‘ltmain.sh’
A generic script implementing basic libtool functionality.

Note that the libtool script itself should not be included with your package. See Sec-
tion 5.4 [Configuring], page 24.

You should use the libtoolize program, rather than manually copying these files into
your package.

5.5.1 Invoking libtoolize

The libtoolize program provides a standard way to add libtool support to your package.
In the future, it may implement better usage checking, or other features to make libtool
even easier to use.

The libtoolize program has the following synopsis:
libtoolize [option]...

and accepts the following options:

‘--copy’
‘-c’ Copy files from the libtool data directory rather than creating symlinks.

‘--debug’ Dump a trace of shell script execution to standard output. This produces a lot
of output, so you may wish to pipe it to less (or more) or redirect to a file.

‘--dry-run’
‘-n’ Don’t run any commands that modify the file system, just print them out.

‘--force’
‘-f’ Replace existing libtool files. By default, libtoolize won’t overwrite existing

files.

‘--help’ Display a help message and exit.

‘--ltdl [TARGET-DIRECTORY-NAME]’
Install libltdl in the TARGET-DIRECTORY-NAME subdirectory of your pack-
age. Normally, the directory is extracted from the argument to LT_CONFIG_
LTDL_DIR in ‘configure.ac’, though you can also specify a subdirectory name
here if you are not using Autoconf for example. If libtoolize can’t determine
the target directory, ‘libltdl’ is used as the default.

Chapter 5: Integrating libtool with your package 32

‘--no-warn’
Normally, Libtoolize tries to diagnose use of deprecated libtool macros and
other stylistic issues. If you are deliberately using outdated calling conventions,
this option prevents Libtoolize from explaining how to update your project’s
Libtool conventions.

‘--nonrecursive’
If passed in conjunction with ‘--ltdl’, this option will cause the libltdl in-
stalled by ‘libtoolize’ to be set up for use with a non-recursive automake
build. To make use of it, you will need to add the following to the ‘Makefile.am’
of the parent project:

libltdl/Makefile.inc appends to the following variables
so we set them here before including it:
BUILT_SOURCES =

AM_CPPFLAGS =
AM_LDFLAGS =

include_HEADERS =
noinst_LTLIBRARIES =
lib_LTLIBRARIES =
EXTRA_LTLIBRARIES =

EXTRA_DIST =

CLEANFILES =
MOSTLYCLEANFILES =

include libltdl/Makefile.inc

‘--quiet’
‘-q’ Work silently. ‘libtoolize --quiet’ is used by gnu Automake to add libtool

files to your package if necessary.

‘--recursive’
If passed in conjunction with ‘--ltdl’, this option will cause the libtoolize
installed ‘libltdl’ to be set up for use with a recursive automake build. To
make use of it, you will need to adjust the parent project’s ‘configure.ac’:

AC_CONFIG_FILES([libltdl/Makefile])

and ‘Makefile.am’:
SUBDIRS += libltdl

‘--subproject’
If passed in conjunction with ‘--ltdl’, this option will cause the libtoolize
installed ‘libltdl’ to be set up for independent configuration and compilation
as a self-contained subproject. To make use of it, you should arrange for your
build to call libltdl/configure, and then run make in the ‘libltdl’ directory
(or the subdirectory you put libltdl into). If your project uses Autoconf, you

Chapter 5: Integrating libtool with your package 33

can use the supplied ‘LT_WITH_LTDL’ macro, or else call ‘AC_CONFIG_SUBDIRS’
directly.
Previous releases of ‘libltdl’ built exclusively in this mode, but now it is the
default mode both for backwards compatibility and because, for example, it is
suitable for use in projects that wish to use ‘libltdl’, but not use the Autotools
for their own build process.

‘--verbose’
‘-v’ Work noisily! Give a blow by blow account of what libtoolize is doing.

‘--version’
Print libtoolize version information and exit.

Sometimes it can be useful to pass options to libtoolize even though it is called by
another program, such as autoreconf. A limited number of options are parsed from the
environment variable LIBTOOLIZE_OPTIONS: currently ‘--debug’, ‘--no-warn’, ‘--quiet’
and ‘--verbose’. Multiple options passed in LIBTOOLIZE_OPTIONS must be separated with
a space, comma or a colon.

By default, a warning is issued for unknown options found in LIBTOOLIZE_OPTIONS unless
the first such option is ‘--no-warn’. Where libtoolize has always quit on receipt of an
unknown option at the command line, this and all previous releases of libtoolize will
continue unabated whatever the content of LIBTOOLIZE_OPTIONS (modulo some possible
warning messages).

trick$ LIBTOOLIZE_OPTIONS=--no-warn,--quiet autoreconf --install

If libtoolize detects an explicit call to AC_CONFIG_MACRO_DIR (see section “The Au-
toconf Manual” in The Autoconf Manual) in your ‘configure.ac’, it will put the Libtool
macros in the specified directory.

In the future other Autotools will automatically check the contents of AC_CONFIG_MACRO_
DIR, but at the moment it is more portable to add the macro directory to ACLOCAL_AMFLAGS
in ‘Makefile.am’, which is where the tools currently look. If libtoolize doesn’t see AC_
CONFIG_MACRO_DIR, it too will honour the first ‘-I’ argument in ACLOCAL_AMFLAGS when
choosing a directory to store libtool configuration macros in. It is perfectly sensible to use
both AC_CONFIG_MACRO_DIR and ACLOCAL_AMFLAGS, as long as they are kept in synchroni-
sation.

ACLOCAL_AMFLAGS = -I m4

When you bootstrap your project with aclocal, then you will need to explicitly pass
the same macro directory with aclocal’s ‘-I’ flag:

trick$ aclocal -I m4

If libtoolize detects an explicit call to AC_CONFIG_AUX_DIR (see section “The Autoconf
Manual” in The Autoconf Manual) in your ‘configure.ac’, it will put the other support
files in the specified directory. Otherwise they too end up in the project root directory.

Unless ‘--no-warn’ is passed, libtoolize displays hints for adding libtool support to
your package, as well.

5.5.2 Autoconf and LTLIBOBJS

People used to add code like the following to their ‘configure.ac’:

Chapter 5: Integrating libtool with your package 34

LTLIBOBJS=‘echo "$LIBOBJS" | sed ’s/\.[^.]* /.lo /g;s/\.[^.]*$/.lo/’‘
AC_SUBST([LTLIBOBJS])

This is no longer required (since Autoconf 2.54), and doesn’t take Automake’s deansification
support into account either, so doesn’t work correctly even with ancient Autoconfs!

Provided you are using a recent (2.54 or better) incarnation of Autoconf, the call to AC_
OUTPUT takes care of setting LTLIBOBJS up correctly, so you can simply delete such snippets
from your ‘configure.ac’ if you had them.

5.6 Static-only libraries

When you are developing a package, it is often worthwhile to configure your package with
the ‘--disable-shared’ flag, or to override the defaults for LT_INIT by using the disable-
shared option (see Section 5.4.1 [The LT_INIT macro], page 25). This prevents libtool from
building shared libraries, which has several advantages:
• compilation is twice as fast, which can speed up your development cycle,
• debugging is easier because you don’t need to deal with any complexities added by

shared libraries, and
• you can see how libtool behaves on static-only platforms.

You may want to put a small note in your package ‘README’ to let other developers know
that ‘--disable-shared’ can save them time. The following example note is taken from
the GIMP3 distribution ‘README’:

The GIMP uses gnu Libtool in order to build shared libraries on a
variety of systems. While this is very nice for making usable
binaries, it can be a pain when trying to debug a program. For that
reason, compilation of shared libraries can be turned off by
specifying the ‘--disable-shared’ option to ‘configure’.

3 gnu Image Manipulation Program, for those who haven’t taken the plunge. See http://www.gimp.org/.

http://www.gimp.org/

Chapter 6: Using libtool with other languages 35

6 Using libtool with other languages

Libtool was first implemented in order to add support for writing shared libraries in the
C language. However, over time, libtool is being integrated with other languages, so that
programmers are free to reap the benefits of shared libraries in their favorite programming
language.

This chapter describes how libtool interacts with other languages, and what special
considerations you need to make if you do not use C.

6.1 Writing libraries for C++

Creating libraries of C++ code should be a fairly straightforward process, because its object
files differ from C ones in only three ways:
1. Because of name mangling, C++ libraries are only usable by the C++ compiler that

created them. This decision was made by the designers of C++ in order to protect users
from conflicting implementations of features such as constructors, exception handling,
and RTTI.

2. On some systems, the C++ compiler must take special actions for the dynamic linker to
run dynamic (i.e., run-time) initializers. This means that we should not call ld directly
to link such libraries, and we should use the C++ compiler instead.

3. C++ compilers will link some Standard C++ library in by default, but libtool does
not know which are these libraries, so it cannot even run the inter-library dependence
analyzer to check how to link it in. Therefore, running ld to link a C++ program or
library is deemed to fail.

Because of these three issues, Libtool has been designed to always use the C++ compiler
to compile and link C++ programs and libraries. In some instances the main() function of a
program must also be compiled with the C++ compiler for static C++ objects to be properly
initialized.

6.2 Tags

Libtool supports multiple languages through the use of tags. Technically a tag corresponds
to a set of configuration variables associated with a language. These variables tell libtool
how it should create objects and libraries for each language.

Tags are defined at configure-time for each language activated in the package (see LT_
LANG in Section 5.4.1 [LT INIT], page 25). Here is the correspondence between language
names and tags names.
Language name Tag name
C CC
C++ CXX
Java GCJ
Fortran 77 F77
Fortran FC
Windows Resource RC

libtool tries to automatically infer which tag to use from the compiler command being
used to compile or link. If it can’t infer a tag, then it defaults to the configuration for the
C language.

Chapter 6: Using libtool with other languages 36

The tag can also be specified using libtool’s ‘--tag=tag ’ option (see Chapter 4 [Invok-
ing libtool], page 14). It is a good idea to do so in ‘Makefile’ rules, because that will allow
users to substitute the compiler without relying on libtool inference heuristics. When no
tag is specified, libtool will default to CC; this tag always exists.

Finally, the set of tags available in a particular project can be retrieved by tracing for
the LT_SUPPORTED_TAG macro (see Chapter 12 [Trace interface], page 70).

Chapter 7: Library interface versions 37

7 Library interface versions

The most difficult issue introduced by shared libraries is that of creating and resolving
runtime dependencies. Dependencies on programs and libraries are often described in terms
of a single name, such as sed. So, one may say “libtool depends on sed,” and that is good
enough for most purposes.

However, when an interface changes regularly, we need to be more specific: “Gnus 5.1
requires Emacs 19.28 or above.” Here, the description of an interface consists of a name,
and a “version number.”

Even that sort of description is not accurate enough for some purposes. What if Emacs
20 changes enough to break Gnus 5.1?

The same problem exists in shared libraries: we require a formal version system to
describe the sorts of dependencies that programs have on shared libraries, so that the
dynamic linker can guarantee that programs are linked only against libraries that provide
the interface they require.

7.1 What are library interfaces?

Interfaces for libraries may be any of the following (and more):
• global variables: both names and types
• global functions: argument types and number, return types, and function names
• standard input, standard output, standard error, and file formats
• sockets, pipes, and other inter-process communication protocol formats

Note that static functions do not count as interfaces, because they are not directly
available to the user of the library.

7.2 Libtool’s versioning system

Libtool has its own formal versioning system. It is not as flexible as some, but it is definitely
the simplest of the more powerful versioning systems.

Think of a library as exporting several sets of interfaces, arbitrarily represented by
integers. When a program is linked against a library, it may use any subset of those
interfaces.

Libtool’s description of the interfaces that a program uses is simple: it encodes the least
and the greatest interface numbers in the resulting binary (first-interface, last-interface).

The dynamic linker is guaranteed that if a library supports every interface number
between first-interface and last-interface, then the program can be relinked against that
library.

Note that this can cause problems because libtool’s compatibility requirements are ac-
tually stricter than is necessary.

Say ‘libhello’ supports interfaces 5, 16, 17, 18, and 19, and that libtool is used to link
‘test’ against ‘libhello’.

Libtool encodes the numbers 5 and 19 in ‘test’, and the dynamic linker will only link
‘test’ against libraries that support every interface between 5 and 19. So, the dynamic
linker refuses to link ‘test’ against ‘libhello’!

Chapter 7: Library interface versions 38

In order to eliminate this problem, libtool only allows libraries to declare consecutive
interface numbers. So, ‘libhello’ can declare at most that it supports interfaces 16 through
19. Then, the dynamic linker will link ‘test’ against ‘libhello’.

So, libtool library versions are described by three integers:

current The most recent interface number that this library implements.

revision The implementation number of the current interface.

age The difference between the newest and oldest interfaces that this library imple-
ments. In other words, the library implements all the interface numbers in the
range from number current - age to current .

If two libraries have identical current and age numbers, then the dynamic linker chooses
the library with the greater revision number.

7.3 Updating library version information

If you want to use libtool’s versioning system, then you must specify the version information
to libtool using the ‘-version-info’ flag during link mode (see Section 4.2 [Link mode],
page 16).

This flag accepts an argument of the form ‘current[:revision[:age]]’. So, passing
‘-version-info 3:12:1’ sets current to 3, revision to 12, and age to 1.

If either revision or age are omitted, they default to 0. Also note that age must be less
than or equal to the current interface number.

Here are a set of rules to help you update your library version information:
1. Start with version information of ‘0:0:0’ for each libtool library.
2. Update the version information only immediately before a public release of your soft-

ware. More frequent updates are unnecessary, and only guarantee that the current
interface number gets larger faster.

3. If the library source code has changed at all since the last update, then increment
revision (‘c:r:a ’ becomes ‘c:r + 1:a ’).

4. If any interfaces have been added, removed, or changed since the last update, increment
current, and set revision to 0.

5. If any interfaces have been added since the last public release, then increment age.
6. If any interfaces have been removed since the last public release, then set age to 0.

Never try to set the interface numbers so that they correspond to the release number of
your package. This is an abuse that only fosters misunderstanding of the purpose of library
versions. Instead, use the ‘-release’ flag (see Section 7.4 [Release numbers], page 38), but
be warned that every release of your package will not be binary compatible with any other
release.

7.4 Managing release information

Often, people want to encode the name of the package release into the shared library so that
it is obvious to the user which package their programs are linked against. This convention
is used especially on gnu/Linux:

Chapter 7: Library interface versions 39

trick$ ls /usr/lib/libbfd*

/usr/lib/libbfd.a /usr/lib/libbfd.so.2.7.0.2
/usr/lib/libbfd.so
trick$

On ‘trick’, ‘/usr/lib/libbfd.so’ is a symbolic link to ‘libbfd.so.2.7.0.2’, which
was distributed as a part of ‘binutils-2.7.0.2’.

Unfortunately, this convention conflicts directly with libtool’s idea of library interface
versions, because the library interface rarely changes at the same time that the release
number does, and the library suffix is never the same across all platforms.

So, in order to accommodate both views, you can use the ‘-release’ flag in order to set
release information for libraries for which you do not want to use ‘-version-info’. For the
‘libbfd’ example, the next release that uses libtool should be built with ‘-release 2.9.0’,
which will produce the following files on gnu/Linux:

trick$ ls /usr/lib/libbfd*

/usr/lib/libbfd-2.9.0.so /usr/lib/libbfd.a
/usr/lib/libbfd.so
trick$

In this case, ‘/usr/lib/libbfd.so’ is a symbolic link to ‘libbfd-2.9.0.so’. This makes
it obvious that the user is dealing with ‘binutils-2.9.0’, without compromising libtool’s
idea of interface versions.

Note that this option causes a modification of the library name, so do not use it unless
you want to break binary compatibility with any past library releases. In general, you should
only use ‘-release’ for package-internal libraries or for ones whose interfaces change very
frequently.

Chapter 8: Tips for interface design 40

8 Tips for interface design

Writing a good library interface takes a lot of practice and thorough understanding of the
problem that the library is intended to solve.

If you design a good interface, it won’t have to change often, you won’t have to keep
updating documentation, and users won’t have to keep relearning how to use the library.

Here is a brief list of tips for library interface design that may help you in your exploits:

Plan ahead
Try to make every interface truly minimal, so that you won’t need to delete
entry points very often.

Avoid interface changes
Some people love redesigning and changing entry points just for the heck of
it (note: renaming a function is considered changing an entry point). Don’t
be one of those people. If you must redesign an interface, then try to leave
compatibility functions behind so that users don’t need to rewrite their existing
code.

Use opaque data types
The fewer data type definitions a library user has access to, the better. If
possible, design your functions to accept a generic pointer (that you can cast to
an internal data type), and provide access functions rather than allowing the
library user to directly manipulate the data. That way, you have the freedom
to change the data structures without changing the interface.

This is essentially the same thing as using abstract data types and inheritance
in an object-oriented system.

Use header files
If you are careful to document each of your library’s global functions and vari-
ables in header files, and include them in your library source files, then the
compiler will let you know if you make any interface changes by accident (see
Section 8.1 [C header files], page 41).

Use the static keyword (or equivalent) whenever possible
The fewer global functions your library has, the more flexibility you’ll have in
changing them. Static functions and variables may change forms as often as
you like. . . your users cannot access them, so they aren’t interface changes.

Be careful with array dimensions
The number of elements in a global array is part of an interface, even if the
header just declares extern int foo[];. This is because on i386 and some
other SVR4/ELF systems, when an application references data in a shared
library the size of that data (whatever its type) is included in the application
executable. If you might want to change the size of an array or string then
provide a pointer not the actual array.

Chapter 8: Tips for interface design 41

8.1 Writing C header files

Writing portable C header files can be difficult, since they may be read by different types
of compilers:

C++ compilers
C++ compilers require that functions be declared with full prototypes, since
C++ is more strongly typed than C. C functions and variables also need to be
declared with the extern "C" directive, so that the names aren’t mangled. See
Section 6.1 [C++ libraries], page 35, for other issues relevant to using C++ with
libtool.

ANSI C compilers
ANSI C compilers are not as strict as C++ compilers, but functions should be
prototyped to avoid unnecessary warnings when the header file is #included.

non-ANSI C compilers
Non-ANSI compilers will report errors if functions are prototyped.

These complications mean that your library interface headers must use some C prepro-
cessor magic in order to be usable by each of the above compilers.

‘foo.h’ in the ‘tests/demo’ subdirectory of the libtool distribution serves as an example
for how to write a header file that can be safely installed in a system directory.

Here are the relevant portions of that file:
/* BEGIN_C_DECLS should be used at the beginning of your declarations,

so that C++ compilers don’t mangle their names. Use END_C_DECLS at
the end of C declarations. */

#undef BEGIN_C_DECLS
#undef END_C_DECLS
#ifdef __cplusplus
define BEGIN_C_DECLS extern "C" {
define END_C_DECLS }
#else
define BEGIN_C_DECLS /* empty */
define END_C_DECLS /* empty */
#endif

/* PARAMS is a macro used to wrap function prototypes, so that
compilers that don’t understand ANSI C prototypes still work,
and ANSI C compilers can issue warnings about type mismatches. */

#undef PARAMS
#if defined (__STDC__) || defined (_AIX) \

|| (defined (__mips) && defined (_SYSTYPE_SVR4)) \
|| defined(WIN32) || defined(__cplusplus)

define PARAMS(protos) protos
#else
define PARAMS(protos) ()
#endif

These macros are used in ‘foo.h’ as follows:

Chapter 8: Tips for interface design 42

#ifndef FOO_H
#define FOO_H 1

/* The above macro definitions. */
#include "..."

BEGIN_C_DECLS

int foo PARAMS((void));
int hello PARAMS((void));

END_C_DECLS

#endif /* !FOO_H */

Note that the ‘#ifndef FOO_H’ prevents the body of ‘foo.h’ from being read more than
once in a given compilation.

Also the only thing that must go outside the BEGIN_C_DECLS/END_C_DECLS pair are
#include lines. Strictly speaking it is only C symbol names that need to be protected,
but your header files will be more maintainable if you have a single pair of of these macros
around the majority of the header contents.

You should use these definitions of PARAMS, BEGIN_C_DECLS, and END_C_DECLS into your
own headers. Then, you may use them to create header files that are valid for C++, ANSI,
and non-ANSI compilers1.

Do not be naive about writing portable code. Following the tips given above will help
you miss the most obvious problems, but there are definitely other subtle portability issues.
You may need to cope with some of the following issues:
• Pre-ANSI compilers do not always support the void * generic pointer type, and so

need to use char * in its place.
• The const, inline and signed keywords are not supported by some compilers, espe-

cially pre-ANSI compilers.
• The long double type is not supported by many compilers.

1 We used to recommend __P, __BEGIN_DECLS and __END_DECLS. This was bad advice since symbols (even
preprocessor macro names) that begin with an underscore are reserved for the use of the compiler.

Chapter 9: Inter-library dependencies 43

9 Inter-library dependencies

By definition, every shared library system provides a way for executables to depend on
libraries, so that symbol resolution is deferred until runtime.

An inter-library dependency is one in which a library depends on other libraries. For
example, if the libtool library ‘libhello’ uses the cos function, then it has an inter-library
dependency on ‘libm’, the math library that implements cos.

Some shared library systems provide this feature in an internally-consistent way: these
systems allow chains of dependencies of potentially infinite length.

However, most shared library systems are restricted in that they only allow a single level
of dependencies. In these systems, programs may depend on shared libraries, but shared
libraries may not depend on other shared libraries.

In any event, libtool provides a simple mechanism for you to declare inter-library de-
pendencies: for every library ‘libname ’ that your own library depends on, simply add a
corresponding -lname option to the link line when you create your library. To make an
example of our ‘libhello’ that depends on ‘libm’:

burger$ libtool --mode=link gcc -g -O -o libhello.la foo.lo hello.lo \

-rpath /usr/local/lib -lm

burger$

When you link a program against ‘libhello’, you don’t need to specify the same ‘-l’
options again: libtool will do that for you, in order to guarantee that all the required
libraries are found. This restriction is only necessary to preserve compatibility with static
library systems and simple dynamic library systems.

Some platforms, such as AIX, do not even allow you this flexibility. In order to build a
shared library, it must be entirely self-contained (that is, have references only to symbols
that are found in the ‘.lo’ files or the specified ‘-l’ libraries), and you need to specify
the ‘-no-undefined’ flag. By default, libtool builds only static libraries on these kinds of
platforms.

The simple-minded inter-library dependency tracking code of libtool releases prior to 1.2
was disabled because it was not clear when it was possible to link one library with another,
and complex failures would occur. A more complex implementation of this concept was
re-introduced before release 1.3, but it has not been ported to all platforms that libtool
supports. The default, conservative behavior is to avoid linking one library with another,
introducing their inter-dependencies only when a program is linked with them.

Chapter 10: Dlopened modules 44

10 Dlopened modules

It can sometimes be confusing to discuss dynamic linking, because the term is used to refer
to two different concepts:
1. Compiling and linking a program against a shared library, which is resolved automati-

cally at run time by the dynamic linker. In this process, dynamic linking is transparent
to the application.

2. The application calling functions such as dlopen that load arbitrary, user-specified
modules at runtime. This type of dynamic linking is explicitly controlled by the appli-
cation.

To mitigate confusion, this manual refers to the second type of dynamic linking as
dlopening a module.

The main benefit to dlopening object modules is the ability to access compiled object
code to extend your program, rather than using an interpreted language. In fact, dlopen
calls are frequently used in language interpreters to provide an efficient way to extend the
language.

As of version 2.2.6, libtool provides support for dlopened modules. However, you should
indicate that your package is willing to use such support, by using the LT_INIT option
‘dlopen’ in ‘configure.ac’. If this option is not given, libtool will assume no dlopening
mechanism is available, and will try to simulate it.

This chapter discusses how you as a dlopen application developer might use libtool to
generate dlopen-accessible modules.

10.1 Building modules to dlopen

On some operating systems, a program symbol must be specially declared in order to
be dynamically resolved with the dlsym (or equivalent) function. Libtool provides the
‘-export-dynamic’ and ‘-module’ link flags (see Section 4.2 [Link mode], page 16), for you
to make that declaration. You need to use these flags if you are linking an application
program that dlopens other modules or a libtool library that will also be dlopened.

For example, if we wanted to build a shared library, ‘hello’, that would later be dlopened
by an application, we would add ‘-module’ to the other link flags:

burger$ libtool --mode=link gcc -module -o hello.la foo.lo \

hello.lo -rpath /usr/local/lib -lm

burger$

If symbols from your executable are needed to satisfy unresolved references in a library
you want to dlopen you will have to use the flag ‘-export-dynamic’. You should use
‘-export-dynamic’ while linking the executable that calls dlopen:

burger$ libtool --mode=link gcc -export-dynamic -o helldl main.o

burger$

10.2 Dlpreopening

Libtool provides special support for dlopening libtool object and libtool library files, so that
their symbols can be resolved even on platforms without any dlopen and dlsym functions.

Chapter 10: Dlopened modules 45

Consider the following alternative ways of loading code into your program, in order of
increasing “laziness”:

1. Linking against object files that become part of the program executable, whether or
not they are referenced. If an object file cannot be found, then the compile time linker
refuses to create the executable.

2. Declaring a static library to the linker, so that it is searched at link time in order to
satisfy any undefined references in the above object files. If the static library cannot
be found, then the compile time linker refuses to create the executable.

3. Declaring a shared library to the runtime linker, so that it is searched at runtime in
order to satisfy any undefined references in the above files. If the shared library cannot
be found, then the dynamic linker aborts the program before it runs.

4. Dlopening a module, so that the application can resolve its own, dynamically-computed
references. If there is an error opening the module, or the module is not found, then
the application can recover without crashing.

Libtool emulates ‘-dlopen’ on static platforms by linking objects into the program at
compile time, and creating data structures that represent the program’s symbol table. In
order to use this feature, you must declare the objects you want your application to dlopen
by using the ‘-dlopen’ or ‘-dlpreopen’ flags when you link your program (see Section 4.2
[Link mode], page 16).

[Structure]struct lt_dlsymbol { const char *name ; void *address ; }
The name attribute is a null-terminated character string of the symbol name, such
as "fprintf". The address attribute is a generic pointer to the appropriate object,
such as &fprintf.

[Structure]struct lt_dlsymlist { const char *originator ;
const lt dlsymbol symbols []; }

The originator attribute is a null-terminated character string, naming the compilation
unit that symbols were preloaded on behalf of. This is usually the basename of a
library, ‘libltdl.la’ has a corresponding originator value of ‘libltdl’; if the symbols
are for the benefit of the application proper, then originator is ‘@PROGRAM@’, though
Libtool takes care of that detail if you use ‘LTDL_SET_PRELOADED_SYMBOLS’.

[Variable]const lt_dlsymlist * lt_preloaded_symbols
An array of lt symbol structures, representing all the preloaded symbols linked into
the program proper. For each module ‘-dlpreopen’ed by the Libtool linked program
there is an element with the name of the module and a address of 0, followed by all
symbols exported from this file. For the executable itself the special name ‘@PROGRAM@’
is used. The last element of all has a name and address of 0.

Some compilers may allow identifiers that are not valid in ANSI C, such as dollar signs.
Libtool only recognizes valid ANSI C symbols (an initial ASCII letter or underscore, followed
by zero or more ASCII letters, digits, and underscores), so non-ANSI symbols will not appear
in lt preloaded symbols.

Chapter 10: Dlopened modules 46

[Function]int lt_dlpreload (const lt dlsymlist *preloaded)
Register the list of preloaded modules preloaded. If preloaded is NULL, then all pre-
viously registered symbol lists, except the list set by lt_dlpreload_default, are
deleted. Return 0 on success.

[Function]int lt_dlpreload_default (const lt dlsymlist *preloaded)
Set the default list of preloaded modules to preloaded, which won’t be deleted by
lt_dlpreload. Note that this function does not require libltdl to be initialized using
lt_dlinit and can be used in the program to register the default preloaded modules.
Instead of calling this function directly, most programs will use the macro LTDL_SET_
PRELOADED_SYMBOLS.
Return 0 on success.

[Macro]LTDL_SET_PRELOADED_SYMBOLS
Set the default list of preloaded symbols. Should be used in your program to initialize
libltdl’s list of preloaded modules.

#include <ltdl.h>

int main() {
/* ... */
LTDL_SET_PRELOADED_SYMBOLS();
/* ... */

}

[Function Type]int lt_dlpreload_callback_func (lt dlhandle handle)
Functions of this type can be passed to lt_dlpreload_open, which in turn will call
back into a function thus passed for each preloaded module that it opens.

[Function]int lt_dlpreload_open (const char *originator,
lt dlpreload callback func *func)

Load all of the preloaded modules for originator. For every module opened in this
way, call func.
To open all of the modules preloaded into ‘libhell.la’ (presumably from within the
‘libhell.a’ initialisation code):

#define preloaded_symbols lt_libhell_LTX_preloaded_symbols

static int hell_preload_callback (lt_dlhandle handle);

int
hell_init (void)
{
...
if (lt_dlpreload (&preloaded_symbols) == 0)
{
lt_dlpreload_open ("libhell", preload_callback);

}
...

Chapter 10: Dlopened modules 47

}

Note that to prevent clashes between multiple preloaded modules, the preloaded sym-
bols are accessed via a mangled symbol name: to get the symbols preloaded into
‘libhell’, you must prefix ‘preloaded_symbols’ with ‘lt_’; the originator name,
‘libhell’ in this case; and ‘_LTX_’. That is, ‘lt_libhell_LTX_preloaded_symbols’
here.

10.3 Linking with dlopened modules

When, say, an interpreter application uses dlopened modules to extend the list of methods it
provides, an obvious abstraction for the maintainers of the interpreter is to have all methods
(including the built in ones supplied with the interpreter) accessed through dlopen. For
one thing, the dlopening functionality will be tested even during routine invocations. For
another, only one subsystem has to be written for getting methods into the interpreter.

The downside of this abstraction is, of course, that environments that provide only static
linkage can’t even load the intrinsic interpreter methods. Not so! We can statically link
those methods by dlpreopening them.

Unfortunately, since platforms such as aix and cygwin require that all library symbols
must be resolved at compile time, the interpreter maintainers will need to provide a library to
both its own dlpreopened modules, and third-party modules loaded by dlopen. In itself, that
is not so bad, except that the interpreter too must provide those same symbols otherwise
it will be impossible to resolve all the symbols required by the modules as they are loaded.
Things are even worse if the code that loads the modules for the interpreter is itself in a
library – and that is usually the case for any non-trivial application. Modern platforms take
care of this by automatically loading all of a module’s dependency libraries as the module
is loaded (libltdl can do this even on platforms that can’t do it by themselves). In the end,
this leads to problems with duplicated symbols and prevents modules from loading, and
prevents the application from compiling when modules are preloaded.

,-------------. ,------------------. ,-----------------.
| Interpreter |----> Module------------> Third-party |
‘-------------’ | Loader | |Dlopened Modules |

| | | ‘-----------------’
,-------v--------.			
	Dlpreopened		
	Modules		
‘----------------’			
,-------v--------.	,--------v--------.		
	Module Interface		
	Library		
‘----------------’	‘-----------------’		
‘------------------’

Libtool has the concept of weak library interfaces to circumvent this problem. Recall
that the code that dlopens method-provider modules for the interpreter application resides
in a library: All of the modules and the dlopener library itself should be linked against
the common library that resolves the module symbols at compile time. To guard against

Chapter 10: Dlopened modules 48

duplicate symbol definitions, and for dlpreopened modules to work at all in this scenario,
the dlopener library must declare that it provides a weak library interface to the common
symbols in the library it shares with the modules. That way, when libtool links the
Module Loader library with some Dlpreopened Modules that were in turn linked against
the Module Interface Library, it knows that the Module Loader provides an already loaded
Module Interface Library to resolve symbols for the Dlpreopened Modules, and doesn’t ask
the compiler driver to link an identical Module Interface Library dependency library too.

In conjunction with Automake, the ‘Makefile.am’ for the Module Loader might look
like this:

lib_LTLIBRARIES = libinterface.la libloader.la

libinterface_la_SOURCES = interface.c interface.h
libinterface_la_LDFLAGS = -version-info 3:2:1

libloader_la_SOURCES = loader.c
libloader_la_LDFLAGS = -weak libinterface.la \

-version-info 3:2:1 \
-dlpreopen ../modules/intrinsics.la

libloader_la_LIBADD = $(libinterface_la_OBJECTS)

And the ‘Makefile.am’ for the ‘intrinsics.la’ module in a sibling ‘modules’ directory
might look like this:

AM_CPPFLAGS = -I$(srcdir)/../libloader
AM_LDFLAGS = -no-undefined -module -avoid-version \

-export-dynamic

noinst_LTLIBRARIES = intrinsics.la

intrinsics_la_LIBADD = ../libloader/libinterface.la

../libloader/libinterface.la:
cd ../libloader && $(MAKE) $(AM_MAKEFLAGS) libinterface.la

For a more complex example, see the sources of ‘libltdl’ in the Libtool distribution,
which is built with the help of the ‘-weak’ option.

10.4 Finding the correct name to dlopen

After a library has been linked with ‘-module’, it can be dlopened. Unfortunately, because
of the variation in library names, your package needs to determine the correct file to dlopen.

The most straightforward and flexible implementation is to determine the name at run-
time, by finding the installed ‘.la’ file, and searching it for the following lines:

The name that we can dlopen.
dlname=’dlname’

If dlname is empty, then the library cannot be dlopened. Otherwise, it gives the dlname
of the library. So, if the library was installed as ‘/usr/local/lib/libhello.la’, and the
dlname was ‘libhello.so.3’, then ‘/usr/local/lib/libhello.so.3’ should be dlopened.

Chapter 10: Dlopened modules 49

If your program uses this approach, then it should search the directories listed in the LD_
LIBRARY_PATH1 environment variable, as well as the directory where libraries will eventually
be installed. Searching this variable (or equivalent) will guarantee that your program can
find its dlopened modules, even before installation, provided you have linked them using
libtool.

10.5 Unresolved dlopen issues

The following problems are not solved by using libtool’s dlopen support:
• Dlopen functions are generally only available on shared library platforms. If you want

your package to be portable to static platforms, you have to use either libltdl (see
Chapter 11 [Using libltdl], page 50) or develop your own alternatives to dlopening
dynamic code. Most reasonable solutions involve writing wrapper functions for the
dlopen family, which do package-specific tricks when dlopening is unsupported or not
available on a given platform.

• There are major differences in implementations of the dlopen family of functions. Some
platforms do not even use the same function names (notably HP-UX, with its shl_load
family).

• The application developer must write a custom search function in order to discover the
correct module filename to supply to dlopen.

1 LIBPATH on AIX, and SHLIB_PATH on HP-UX.

Chapter 11: Using libltdl 50

11 Using libltdl

Libtool provides a small library, called ‘libltdl’, that aims at hiding the various difficulties
of dlopening libraries from programmers. It consists of a few headers and small C source
files that can be distributed with applications that need dlopening functionality. On some
platforms, whose dynamic linkers are too limited for a simple implementation of ‘libltdl’
services, it requires gnu DLD, or it will only emulate dynamic linking with libtool’s dlpre-
opening mechanism.

libltdl supports currently the following dynamic linking mechanisms:

• dlopen (Solaris, Linux and various BSD flavors)
• shl_load (HP-UX)
• LoadLibrary (Win16 and Win32)
• load_add_on (BeOS)
• NSAddImage or NSLinkModule (Darwin and Mac OS X)
• gnu DLD (emulates dynamic linking for static libraries)
• libtool’s dlpreopen (see see Section 10.2 [Dlpreopening], page 44)

libltdl is licensed under the terms of the gnu Library General Public License, with the
following exception:

As a special exception to the gnu Lesser General Public License, if you dis-
tribute this file as part of a program or library that is built using gnu Libtool,
you may include it under the same distribution terms that you use for the rest
of that program.

11.1 How to use libltdl in your programs

The libltdl API is similar to the dlopen interface of Solaris and Linux, which is very simple
but powerful.

To use libltdl in your program you have to include the header file ‘ltdl.h’:

#include <ltdl.h>

The early releases of libltdl used some symbols that violated the posix namespace
conventions. These symbols are now deprecated, and have been replaced by those
described here. If you have code that relies on the old deprecated symbol names, defining
‘LT_NON_POSIX_NAMESPACE’ before you include ‘ltdl.h’ provides conversion macros.
Whichever set of symbols you use, the new API is not binary compatible with the last, so
you will need to recompile your application in order to use this version of libltdl.

Note that libltdl is not well tested in a multithreaded environment, though the intention
is that it should work (see Section 11.3 [Using libltdl in a multi threaded environment],
page 57). It was reported that gnu/Linux’s glibc 2.0’s dlopen with ‘RTLD_LAZY’ (which
libltdl uses by default) is not thread-safe, but this problem is supposed to be fixed in glibc
2.1. On the other hand, ‘RTLD_NOW’ was reported to introduce problems in multi-threaded
applications on FreeBSD. Working around these problems is left as an exercise for the
reader; contributions are certainly welcome.

The following macros are defined by including ‘ltdl.h’:

Chapter 11: Using libltdl 51

[Macro]LT_PATHSEP_CHAR
LT_PATHSEP_CHAR is the system-dependent path separator, that is, ‘;’ on Windows
and ‘:’ everywhere else.

[Macro]LT_DIRSEP_CHAR
If LT_DIRSEP_CHAR is defined, it can be used as directory separator in addition to ‘/’.
On Windows, this contains ‘\’.

The following types are defined in ‘ltdl.h’:

[Type]lt_dlhandle
lt_dlhandle is a module “handle”. Every lt dlopened module has a handle associ-
ated with it.

[Type]lt_dladvise
lt_dladvise is used to control optional module loading modes. If it is not used, the
default mode of the underlying system module loader is used.

[Type]lt_dlsymlist
lt_dlsymlist is a symbol list for dlpreopened modules. This structure is described
in see Section 10.2 [Dlpreopening], page 44.

Chapter 11: Using libltdl 52

libltdl provides the following functions:

[Function]int lt_dlinit (void)
Initialize libltdl. This function must be called before using libltdl and may be called
several times. Return 0 on success, otherwise the number of errors.

[Function]int lt_dlexit (void)
Shut down libltdl and close all modules. This function will only then shut down libltdl
when it was called as many times as lt_dlinit has been successfully called. Return
0 on success, otherwise the number of errors.

[Function]lt_dlhandle lt_dlopen (const char *filename)
Open the module with the file name filename and return a handle for it. lt_dlopen
is able to open libtool dynamic modules, preloaded static modules, the program itself
and native dynamic modules1.
Unresolved symbols in the module are resolved using its dependency libraries and
previously dlopened modules. If the executable using this module was linked with
the ‘-export-dynamic’ flag, then the global symbols in the executable will also be
used to resolve references in the module.
If filename is NULL and the program was linked with ‘-export-dynamic’ or ‘-dlopen
self’, lt_dlopen will return a handle for the program itself, which can be used to
access its symbols.
If libltdl cannot find the library and the file name filename does not have a directory
component it will additionally look in the following search paths for the module (in
the following order):
1. user-defined search path: This search path can be changed by the pro-

gram using the functions lt_dlsetsearchpath, lt_dladdsearchdir and
lt_dlinsertsearchdir.

2. libltdl’s search path: This search path is the value of the environment variable
LTDL LIBRARY PATH.

3. system library search path: The system dependent library search path (e.g. on
Linux it is LD LIBRARY PATH).

Each search path must be a list of absolute directories separated by LT_PATHSEP_
CHAR, for example, "/usr/lib/mypkg:/lib/foo". The directory names may not
contain the path separator.
If the same module is loaded several times, the same handle is returned. If lt_dlopen
fails for any reason, it returns NULL.

[Function]lt_dlhandle lt_dlopenext (const char *filename)
The same as lt_dlopen, except that it tries to append different file name extensions
to the file name. If the file with the file name filename cannot be found libltdl tries
to append the following extensions:
1. the libtool archive extension ‘.la’

1 Some platforms, notably Mac OS X, differentiate between a runtime library that cannot be opened by
lt_dlopen and a dynamic module that can. For maximum portability you should try to ensure that you
only pass lt_dlopen objects that have been compiled with libtool’s ‘-module’ flag.

Chapter 11: Using libltdl 53

2. the extension used for native dynamically loadable modules on the host platform,
e.g., ‘.so’, ‘.sl’, etc.

This lookup strategy was designed to allow programs that don’t have knowledge about
native dynamic libraries naming conventions to be able to dlopen such libraries as
well as libtool modules transparently.

[Function]lt_dlhandle lt_dlopenadvise (const char *filename,
lt dladvise advise)

The same as lt_dlopen, except that it also requires an additional argument which
may contain additional hints to the underlying system module loader. The advise
parameter is opaque and can only be accessed with the functions documented below.

Note that this function does not change the content of advise, so unlike the other
calls in this api takes a direct lt_dladvise type, and not a pointer to the same.

[Function]int lt_dladvise_init (lt dladvise *advise)
The advise parameter can be used to pass hints to the module loader when using lt_
dlopenadvise to perform the loading. The advise parameter needs to be initialised
by this function before it can be used. Any memory used by advise needs to be
recycled with lt_dladvise_destroy when it is no longer needed.

On failure, lt_dladvise_init returns non-zero and sets an error message that can
be retrieved with lt_dlerror.

[Function]int lt_dladvise_destroy (lt dladvise *advise)
Recycle the memory used by advise. For an example, see the documentation for
lt_dladvise_ext.

On failure, lt_dladvise_destroy returns non-zero and sets an error message that
can be retrieved with lt_dlerror.

[Function]int lt_dladvise_ext (lt dladvise *advise)
Set the ext hint on advise. Passing an advise parameter to lt_dlopenadvise
with this hint set causes it to try to append different file name extensions like
lt_dlopenext.

The following example is equivalent to calling lt_dlopenext (filename):

lt_dlhandle
my_dlopenext (const char *filename)
{
lt_dlhandle handle = 0;
lt_dladvise advise;

if (!lt_dladvise_init (&advise) && !lt_dladvise_ext (&advise))
handle = lt_dlopenadvise (filename, advise);

lt_dladvise_destroy (&advise);

return handle;
}

Chapter 11: Using libltdl 54

On failure, lt_dladvise_ext returns non-zero and sets an error message that can be
retrieved with lt_dlerror.

[Function]int lt_dladvise_global (lt dladvise *advise)
Set the symglobal hint on advise. Passing an advise parameter to lt_dlopenadvise
with this hint set causes it to try to make the loaded module’s symbols globally
available for resolving unresolved symbols in subsequently loaded modules.

If neither the symglobal nor the symlocal hints are set, or if a module is loaded
without using the lt_dlopenadvise call in any case, then the visibility of the module’s
symbols will be as per the default for the underlying module loader and os. Even
if a suitable hint is passed, not all loaders are able to act upon it in which case
lt_dlgetinfo will reveal whether the hint was actually followed.

On failure, lt_dladvise_global returns non-zero and sets an error message that can
be retrieved with lt_dlerror.

[Function]int lt_dladvise_local (lt dladvise *advise)
Set the symlocal hint on advise. Passing an advise parameter to lt_dlopenadvise
with this hint set causes it to try to keep the loaded module’s symbols hidden so that
they are not visible to subsequently loaded modules.

If neither the symglobal nor the symlocal hints are set, or if a module is loaded
without using the lt_dlopenadvise call in any case, then the visibility of the module’s
symbols will be as per the default for the underlying module loader and os. Even
if a suitable hint is passed, not all loaders are able to act upon it in which case
lt_dlgetinfo will reveal whether the hint was actually followed.

On failure, lt_dladvise_local returns non-zero and sets an error message that can
be retrieved with lt_dlerror.

[Function]int lt_dladvise_resident (lt dladvise *advise)
Set the resident hint on advise. Passing an advise parameter to lt_dlopenadvise
with this hint set causes it to try to make the loaded module resident in memory, so
that it cannot be unloaded with a later call to lt_dlclose.

On failure, lt_dladvise_resident returns non-zero and sets an error message that
can be retrieved with lt_dlerror.

[Function]int lt_dladvise_preload (lt dladvise *advise)
Set the preload hint on advise. Passing an advise parameter to lt_dlopenadvise
with this hint set causes it to load only preloaded modules, so that if a suitable
preloaded module is not found, lt_dlopenadvise will return NULL.

[Function]int lt_dlclose (lt dlhandle handle)
Decrement the reference count on the module handle. If it drops to zero and no other
module depends on this module, then the module is unloaded. Return 0 on success.

[Function]void * lt_dlsym (lt dlhandle handle, const char *name)
Return the address in the module handle, where the symbol given by the null-
terminated string name is loaded. If the symbol cannot be found, NULL is returned.

Chapter 11: Using libltdl 55

[Function]const char * lt_dlerror (void)
Return a human readable string describing the most recent error that occurred from
any of libltdl’s functions. Return NULL if no errors have occurred since initialization
or since it was last called.

[Function]int lt_dladdsearchdir (const char *search_dir)
Append the search directory search dir to the current user-defined library search
path. Return 0 on success.

[Function]int lt_dlinsertsearchdir (const char *before ,
const char *search_dir)

Insert the search directory search dir into the user-defined library search path, im-
mediately before the element starting at address before. If before is ‘NULL’, then
search dir is appending as if lt_dladdsearchdir had been called. Return 0 on suc-
cess.

[Function]int lt_dlsetsearchpath (const char *search_path)
Replace the current user-defined library search path with search path, which must be
a list of absolute directories separated by LT_PATHSEP_CHAR. Return 0 on success.

[Function]const char *lt_dlgetsearchpath (void)
Return the current user-defined library search path.

[Function]int lt_dlforeachfile (const char *search_path ,
int (*func) (const char *filename, void * data), void * data)

In some applications you may not want to load individual modules with known names,
but rather find all of the modules in a set of directories and load them all during
initialisation. With this function you can have libltdl scan the LT_PATHSEP_CHAR-
delimited directory list in search path for candidates, and pass them, along with data
to your own callback function, func. If search path is ‘NULL’, then search all of the
standard locations that lt_dlopen would examine. This function will continue to
make calls to func for each file that it discovers in search path until one of these calls
returns non-zero, or until the files are exhausted. ‘lt_dlforeachfile’ returns the
value returned by the last call made to func.

For example you could define func to build an ordered argv-like vector of files using
data to hold the address of the start of the vector.

[Function]int lt_dlmakeresident (lt dlhandle handle)
Mark a module so that it cannot be ‘lt_dlclose’d. This can be useful if a module
implements some core functionality in your project that would cause your code to
crash if removed. Return 0 on success.

If you use ‘lt_dlopen (NULL)’ to get a handle for the running binary, that handle will
always be marked as resident, and consequently cannot be successfully ‘lt_dlclose’d.

[Function]int lt_dlisresident (lt dlhandle handle)
Check whether a particular module has been marked as resident, returning 1 if it has
or 0 otherwise. If there is an error while executing this function, return -1 and set an
error message for retrieval with lt_dlerror.

Chapter 11: Using libltdl 56

11.2 Creating modules that can be dlopened

Libtool modules are created like normal libtool libraries with a few exceptions:
You have to link the module with libtool’s ‘-module’ switch, and you should link any

program that is intended to dlopen the module with ‘-dlopen modulename.la ’ where pos-
sible, so that libtool can dlpreopen the module on platforms that do not support dlopening.
If the module depends on any other libraries, make sure you specify them either when you
link the module or when you link programs that dlopen it. If you want to disable ver-
sioning (see Chapter 7 [Versioning], page 37) for a specific module you should link it with
the ‘-avoid-version’ switch. Note that libtool modules don’t need to have a "lib" prefix.
However, Automake 1.4 or higher is required to build such modules.

Usually a set of modules provide the same interface, i.e. exports the same symbols, so that
a program can dlopen them without having to know more about their internals: In order
to avoid symbol conflicts all exported symbols must be prefixed with "modulename LTX "
(modulename is the name of the module). Internal symbols must be named in such a
way that they won’t conflict with other modules, for example, by prefixing them with
" modulename ". Although some platforms support having the same symbols defined more
than once it is generally not portable and it makes it impossible to dlpreopen such modules.

libltdl will automatically cut the prefix off to get the real name of the symbol. Addition-
ally, it supports modules that do not use a prefix so that you can also dlopen non-libtool
modules.

‘foo1.c’ gives an example of a portable libtool module. Exported symbols are prefixed
with "foo1 LTX ", internal symbols with " foo1 ". Aliases are defined at the beginning so
that the code is more readable.

/* aliases for the exported symbols */
#define foo foo1_LTX_foo
#define bar foo1_LTX_bar

/* a global variable definition */
int bar = 1;

/* a private function */
int _foo1_helper() {
return bar;

}

/* an exported function */
int foo() {
return _foo1_helper();

}

The ‘Makefile.am’ contains the necessary rules to build the module ‘foo1.la’:
...
lib_LTLIBRARIES = foo1.la

foo1_la_SOURCES = foo1.c
foo1_la_LDFLAGS = -module

Chapter 11: Using libltdl 57

...

11.3 Using libltdl in a multi threaded environment

Libltdl provides a wrapper around whatever dynamic run-time object loading mechanisms
are provided by the host system, many of which are themselves not thread safe. Conse-
quently libltdl cannot itself be consistently thread safe.

If you wish to use libltdl in a multithreaded environment, then you must mutex lock
around libltdl calls, since they may in turn be calling non-thread-safe system calls on some
target hosts.

Some old releases of libtool provided a mutex locking api that was unusable with POSIX
threads, so callers were forced to lock around all libltdl api calls anyway. That mutex locking
api was next to useless, and is not present in current releases.

Some future release of libtool may provide a new POSIX thread compliant mutex locking
api.

11.4 Data associated with loaded modules

Some of the internal information about each loaded module that is maintained by libltdl is
available to the user, in the form of this structure:

[Type]struct lt_dlinfo { char *filename ; char *name ; int ref_count ;
int is_resident ; int is_symglobal ; int is_symlocal ;}

lt_dlinfo is used to store information about a module. The filename attribute is
a null-terminated character string of the real module file name. If the module is a
libtool module then name is its module name (e.g. "libfoo" for "dir/libfoo.la"),
otherwise it is set to NULL. The ref count attribute is a reference counter that de-
scribes how often the same module is currently loaded. The remaining fields can be
compared to any hints that were passed to lt_dlopenadvise to determine whether
the underlying loader was able to follow them.

The following function will return a pointer to libltdl’s internal copy of this structure for
the given handle:

[Function]const lt_dlinfo * lt_dlgetinfo (lt dlhandle handle)
Return a pointer to a struct that contains some information about the module handle.
The contents of the struct must not be modified. Return NULL on failure.

Furthermore, in order to save you from having to keep a list of the handles of all the
modules you have loaded, these functions allow you to iterate over libltdl’s list of loaded
modules:

[Type]lt_dlinterface_id
The opaque type used to hold the module interface details for each registered libltdl
client.

[Type]int lt dlhandle interface (lt dlhandle handle, const char *id_string)
Functions of this type are called to check that a handle conforms to a library’s ex-
pected module interface when iterating over the global handle list. You should be

Chapter 11: Using libltdl 58

careful to write a callback function of this type that can correctly identify modules
that belong to this client, both to prevent other clients from accidentally finding your
loaded modules with the iterator functions below, and vice versa. The best way to
do this is to check that module handle conforms to the interface specification of your
loader using lt_dlsym.

The callback may be given every module loaded by all the libltdl module clients in
the current address space, including any modules loaded by other libraries such as
libltdl itself, and should return non-zero if that module does not fulfill the interface
requirements of your loader.

int
my_interface_cb (lt_dlhandle handle, const char *id_string)
{
char *(*module_id) (void) = NULL;

/* A valid my module must provide all of these symbols. */
if (!((module_id = (char*(*)(void)) lt_dlsym ("module_version"))

&& lt_dlsym ("my_module_entrypoint")))
return 1;

if (strcmp (id_string, module_id()) != 0)
return 1;

return 0;
}

[Function]lt_dlinterface_id lt_dlinterface_register
(const char *id_string , lt dlhandle interface *iface)

Use this function to register your interface validator with libltdl, and in return obtain
a unique key to store and retrieve per-module data. You supply an id string and iface
so that the resulting lt_dlinterface_id can be used to filter the module handles
returned by the iteration functions below. If iface is NULL, all modules will be matched.

[Function]void lt_dlinterface_free (lt dlinterface id iface)
Release the data associated with iface.

[Function]int lt_dlhandle_map (lt dlinterface id iface ,
int (*func) (lt dlhandle handle, void * data), void * data)

For each module that matches iface, call the function func. When writing the func
callback function, the argument handle is the handle of a loaded module, and data is
the last argument passed to lt_dlhandle_map. As soon as func returns a non-zero
value for one of the handles, lt_dlhandle_map will stop calling func and immediately
return that non-zero value. Otherwise 0 is eventually returned when func has been
successfully called for all matching modules.

Chapter 11: Using libltdl 59

[Function]lt_dlhandle lt_dlhandle_iterate (lt dlinterface id iface ,
lt dlhandle place)

Iterate over the module handles loaded by iface, returning the first matching handle
in the list if place is NULL, and the next one on subsequent calls. If place is the last
element in the list of eligible modules, this function returns NULL.

lt_dlhandle handle = 0;
lt_dlinterface_id iface = my_interface_id;

while ((handle = lt_dlhandle_iterate (iface, handle)))
{
...

}

[Function]lt_dlhandle lt_dlhandle_fetch (lt dlinterface id iface ,
const char *module_name)

Search through the module handles loaded by iface for a module named module name,
returning its handle if found or else NULL if no such named module has been loaded
by iface.

However, you might still need to maintain your own list of loaded module handles (in
parallel with the list maintained inside libltdl) if there were any other data that your
application wanted to associate with each open module. Instead, you can use the following
api calls to do that for you. You must first obtain a unique interface id from libltdl as
described above, and subsequently always use it to retrieve the data you stored earlier.
This allows different libraries to each store their own data against loaded modules, without
interfering with one another.

[Function]void * lt_dlcaller_set_data (lt dlinterface id key ,
lt dlhandle handle , void * data)

Set data as the set of data uniquely associated with key and handle for later retrieval.
This function returns the data previously associated with key and handle if any. A
result of 0, may indicate that a diagnostic for the last error (if any) is available from
lt_dlerror().
For example, to correctly remove some associated data:

void *stale = lt_dlcaller_set_data (key, handle, 0);
if (stale != NULL)
{
free (stale);

}
else
{
char *error_msg = lt_dlerror ();

if (error_msg != NULL)
{
my_error_handler (error_msg);
return STATUS_FAILED;

Chapter 11: Using libltdl 60

}
}

[Function]void * lt_dlcaller_get_data (lt dlinterface id key ,
lt dlhandle handle)

Return the address of the data associated with key and handle, or else NULL if there
is none.

Old versions of libltdl also provided a simpler, but similar, api based around lt_
dlcaller_id. Unfortunately, it had no provision for detecting whether a module belonged
to a particular interface as libltdl didn’t support multiple loaders in the same address space
at that time. Those apis are no longer supported as there would be no way to stop clients
of the old apis from seeing (and accidentally altering) modules loaded by other libraries.

11.5 How to create and register new module loaders

Sometimes libltdl’s many ways of gaining access to modules are not sufficient for the pur-
poses of a project. You can write your own loader, and register it with libltdl so that
lt_dlopen will be able to use it.

Writing a loader involves writing at least three functions that can be called by lt_dlopen,
lt_dlsym and lt_dlclose. Optionally, you can provide a finalisation function to perform
any cleanup operations when lt_dlexit executes, and a symbol prefix string that will be
prepended to any symbols passed to lt_dlsym. These functions must match the function
pointer types below, after which they can be allocated to an instance of lt_user_dlloader
and registered.

Registering the loader requires that you choose a name for it, so that it can be recognised
by lt_dlloader_find and removed with lt_dlloader_remove. The name you choose must
be unique, and not already in use by libltdl’s builtin loaders:

"dlopen" The system dynamic library loader, if one exists.

"dld" The gnu dld loader, if ‘libdld’ was installed when libltdl was built.

"dlpreload"
The loader for lt_dlopening of preloaded static modules.

The prefix "dl" is reserved for loaders supplied with future versions of libltdl, so you
should not use that for your own loader names.

The following types are defined in ‘ltdl.h’:

[Type]lt_module
lt_module is a dlloader dependent module. The dynamic module loader extensions
communicate using these low level types.

[Type]lt_dlloader
lt_dlloader is a handle for module loader types.

[Type]lt_user_data
lt_user_data is used for specifying loader instance data.

Chapter 11: Using libltdl 61

[Type]struct lt_user_dlloader {const char *sym_prefix ;
lt module open *module_open ; lt module close *module_close ;
lt find sym *find_sym ; lt dlloader exit *dlloader_exit ; }

If you want to define a new way to open dynamic modules, and have the lt_dlopen
api use it, you need to instantiate one of these structures and pass it to lt_dlloader_
add. You can pass whatever you like in the dlloader data field, and it will be passed
back as the value of the first parameter to each of the functions specified in the
function pointer fields.

[Type]lt_module lt_module_open (const char *filename)
The type of the loader function for an lt_dlloader module loader. The value set in
the dlloader data field of the struct lt_user_dlloader structure will be passed into
this function in the loader data parameter. Implementation of such a function should
attempt to load the named module, and return an lt_module suitable for passing
in to the associated lt_module_close and lt_sym_find function pointers. If the
function fails it should return NULL, and set the error message with lt_dlseterror.

[Type]int lt_module_close (lt user data loader_data, lt module module)
The type of the unloader function for a user defined module loader. Implementation
of such a function should attempt to release any resources tied up by the module
module, and then unload it from memory. If the function fails for some reason, set
the error message with lt_dlseterror and return non-zero.

[Type]void * lt_find_sym (lt module module, const char *symbol)
The type of the symbol lookup function for a user defined module loader. Imple-
mentation of such a function should return the address of the named symbol in the
module module, or else set the error message with lt_dlseterror and return NULL
if lookup fails.

[Type]int lt_dlloader_exit (lt user data loader_data)
The type of the finalisation function for a user defined module loader. Implementation
of such a function should free any resources associated with the loader, including any
user specified data in the dlloader_data field of the lt_user_dlloader. If non-NULL,
the function will be called by lt_dlexit, and lt_dlloader_remove.

For example:
int
register_myloader (void)
{
lt_user_dlloader dlloader;

/* User modules are responsible for their own initialisation. */
if (myloader_init () != 0)
return MYLOADER_INIT_ERROR;

dlloader.sym_prefix = NULL;
dlloader.module_open = myloader_open;
dlloader.module_close = myloader_close;

Chapter 11: Using libltdl 62

dlloader.find_sym = myloader_find_sym;
dlloader.dlloader_exit = myloader_exit;
dlloader.dlloader_data = (lt_user_data)myloader_function;

/* Add my loader as the default module loader. */
if (lt_dlloader_add (lt_dlloader_next (NULL), &dlloader, "myloader") != 0)
return ERROR;

return OK;
}

Note that if there is any initialisation required for the loader, it must be performed
manually before the loader is registered – libltdl doesn’t handle user loader initialisation.

Finalisation is handled by libltdl however, and it is important to ensure the dlloader_
exit callback releases any resources claimed during the initialisation phase.

Chapter 11: Using libltdl 63

libltdl provides the following functions for writing your own module loaders:

[Function]int lt_dlloader_add (lt dlloader *place, lt user dlloader *dlloader,
const char *loader_name)

Add a new module loader to the list of all loaders, either as the last loader (if place
is NULL), else immediately before the loader passed as place. loader name will be
returned by lt_dlloader_name if it is subsequently passed a newly registered loader.
These loader names must be unique, or lt_dlloader_remove and lt_dlloader_
find cannot work. Returns 0 for success.

/* Make myloader be the last one. */
if (lt_dlloader_add (NULL, myloader) != 0)
perror (lt_dlerror ());

[Function]int lt_dlloader_remove (const char *loader_name)
Remove the loader identified by the unique name, loader name. Before this can
succeed, all modules opened by the named loader must have been closed. Returns 0
for success, otherwise an error message can be obtained from lt_dlerror.

/* Remove myloader. */
if (lt_dlloader_remove ("myloader") != 0)
perror (lt_dlerror ());

[Function]lt_dlloader *lt_dlloader_next (lt_dlloader *place)
Iterate over the module loaders, returning the first loader if place is NULL, and the
next one on subsequent calls. The handle is for use with lt_dlloader_add.

/* Make myloader be the first one. */
if (lt_dlloader_add (lt_dlloader_next (NULL), myloader) != 0)
return ERROR;

[Function]lt_dlloader *lt_dlloader_find (const char *loader_name)
Return the first loader with a matching loader name identifier, or else NULL, if the
identifier is not found.
The identifiers that may be used by libltdl itself, if the host architecture supports
them are dlopen1, dld and dlpreload.

/* Add a user loader as the next module loader to be tried if
the standard dlopen loader were to fail when lt_dlopening. */

if (lt_dlloader_add (lt_dlloader_find ("dlopen"), myloader) != 0)
return ERROR;

[Function]const char *lt_dlloader_name (lt_dlloader *place)
Return the identifying name of PLACE, as obtained from lt_dlloader_next or lt_
dlloader_find. If this function fails, it will return NULL and set an error for retrieval
with lt_dlerror.

[Function]lt_user_data *lt_dlloader_data (lt_dlloader *place)
Return the address of the dlloader_data of PLACE, as obtained from lt_dlloader_
next or lt_dlloader_find. If this function fails, it will return NULL and set an error
for retrieval with lt_dlerror.

1 This is used for the host dependent module loading api – shl_load and LoadLibrary for example

Chapter 11: Using libltdl 64

11.5.1 Error handling within user module loaders

[Function]int lt_dladderror (const char *diagnostic)
This function allows you to integrate your own error messages into lt_dlerror. Pass
in a suitable diagnostic message for return by lt_dlerror, and an error identifier for
use with lt_dlseterror is returned.
If the allocation of an identifier fails, this function returns -1.

int myerror = lt_dladderror ("Doh!");
if (myerror < 0)
perror (lt_dlerror ());

[Function]int lt_dlseterror (int errorcode)
When writing your own module loaders, you should use this function to raise errors
so that they are propagated through the lt_dlerror interface. All of the standard
errors used by libltdl are declared in ‘ltdl.h’, or you can add more of your own with
lt_dladderror. This function returns 0 on success.

if (lt_dlseterror (LTDL_ERROR_NO_MEMORY) != 0)
perror (lt_dlerror ());

11.6 How to distribute libltdl with your package

Even though libltdl is installed together with libtool, you may wish to include libltdl in the
distribution of your package, for the convenience of users of your package that don’t have
libtool or libltdl installed, or if you are using features of a very new version of libltdl that
you don’t expect your users to have yet. In such cases, you must decide which flavor of
libltdl you want to use: a convenience library or an installable libtool library.

The most simplistic way to add libltdl to your package is to copy all the ‘libltdl’
source files to a subdirectory within your package and to build and link them along with
the rest of your sources. To help you do this, the m4 macros for Autoconf are available
in ‘ltdl.m4’. You must ensure that they are available in ‘aclocal.m4’ before you run
Autoconf2. Having made the macros available, you must add a call to the ‘LTDL_INIT’ macro
(after the call to ‘LT_INIT’ to your package’s ‘configure.ac’ to perform the configure time
checks required to build the library correctly. Unfortunately, this method has problems if
you then try to link the package binaries with an installed libltdl, or a library that depends
on libltdl, because of the duplicate symbol definitions. For example, ultimately linking
against two different versions of libltdl, or against both a local convenience library and an
installed libltdl is bad. Ensuring that only one copy of the libltdl sources are linked into
any program is left as an exercise for the reader.

[Macro]LT_CONFIG_LTDL_DIR (DIRECTORY)
Declare DIRECTORY to be the location of the libltdl source files, for libtoolize
--ltdl to place them. See Section 5.5.1 [Invoking libtoolize], page 31, for more
details. Provided that you add an appropriate LT_CONFIG_LTDL_DIR call in your
‘configure.ac’ before calling libtoolize, the appropriate libltdl files will be in-
stalled automatically.

2 We used to recommend adding the contents of ‘ltdl.m4’ to ‘acinclude.m4’, but with aclocal from a
modern Automake (1.8 or newer) and this release of libltdl that is not only unnecessary but makes it
easy to forget to upgrade ‘acinclude.m4’ if you move to a different release of libltdl.

Chapter 11: Using libltdl 65

[Macro]LTDL_INIT (OPTIONS)
[Macro]LT_WITH_LTDL
[Macro]AC_WITH_LTDL

AC_WITH_LTDL and LT_WITH_LTDL are deprecated names for older versions of this
macro; autoupdate will update your ‘configure.ac’ file.
This macro adds the following options to the configure script:

‘--with-ltdl-include INSTALLED-LTDL-HEADER-DIR ’
The LTDL_INIT macro will look in the standard header file locations to
find the installed libltdl headers. If LTDL_INIT can’t find them by itself,
the person who builds your package can use this option to tell configure
where the installed libltdl headers are.

‘--with-ltdl-lib INSTALLED-LTDL-LIBRARY-DIR ’
Similarly, the person building your package can use this option to help
configure find the installed ‘libltdl.la’.

‘--with-included-ltdl’
If there is no installed libltdl, or in any case if the person building your
package would rather use the libltdl sources shipped with the package
in the subdirectory named by LT_CONFIG_LTDL_DIR, they should pass
this option to configure.

If the ‘--with-included-ltdl’ is not passed at configure time, and an installed
libltdl is not found3, then configure will exit immediately with an error that
asks the user to either specify the location of an installed libltdl using the
‘--with-ltdl-include’ and ‘--with-ltdl-lib’ options, or to build with the
libltdl sources shipped with the package by passing ‘--with-included-ltdl’.
If an installed libltdl is found, then LIBLTDL is set to the link flags needed to use
it, and LTDLINCL to the preprocessor flags needed to find the installed headers, and
LTDLDEPS will be empty. Note, however, that no version checking is performed. You
should manually check for the libltdl features you need in ‘configure.ac’:

LT_INIT([dlopen])
LTDL_INIT

The lt_dladvise_init symbol was added with libtool-2.2
if test "x$with_included_ltdl" != "xyes"; then
save_CFLAGS="$CFLAGS"
save_LDFLAGS="$LDFLAGS"
CFLAGS="$CFLAGS $LTDLINCL"
LDFLAGS="$LDFLAGS $LIBLTDL"
AC_CHECK_LIB([ltdl], [lt_dladvise_init],

[],
[AC_MSG_ERROR([installed libltdl is too old])])

LDFLAGS="$save_LDFLAGS"
CFLAGS="$save_CFLAGS"

3 Even if libltdl is installed, ‘LTDL_INIT’ may fail to detect it if libltdl depends on symbols provided by
libraries other than the C library.

Chapter 11: Using libltdl 66

fi

OPTIONS may include no more than one of the following build modes depending
on how you want your project to build libltdl: ‘nonrecursive’, ‘recursive’, or
‘subproject’. In order for libtoolize to detect this option correctly, if you supply
one of these arguments, they must be given literally (i.e., macros or shell variables
that expand to the correct ltdl mode will not work).

‘nonrecursive’
This is how the Libtool project distribution builds the libltdl we ship
and install. If you wish to use Automake to build libltdl without in-
voking a recursive make to descend into the libltdl subdirectory, then
use this option. You will need to set your configuration up carefully to
make this work properly, and you will need releases of Autoconf and Au-
tomake that support subdir-objects and LIBOBJDIR properly. In your
‘configure.ac’, add:

AM_INIT_AUTOMAKE([subdir-objects])
AC_CONFIG_HEADERS([config.h])
LT_CONFIG_LTDL_DIR([libltdl])
LT_INIT([dlopen])
LTDL_INIT([nonrecursive])

You have to use a config header, but it may have a name different than
‘config.h’.

Also, add the following near the top of your ‘Makefile.am’:

AM_CPPFLAGS =
AM_LDFLAGS =

BUILT_SOURCES =
EXTRA_DIST =
CLEANFILES =
MOSTLYCLEANFILES =

include_HEADERS =
noinst_LTLIBRARIES =
lib_LTLIBRARIES =
EXTRA_LTLIBRARIES =

include libltdl/Makefile.inc

Unless you build no other libraries from this ‘Makefile.am’, you will also
need to change lib_LTLIBRARIES to assign with ‘+=’ so that the libltdl
targets declared in ‘Makefile.inc’ are not overwritten.

‘recursive’
This build mode still requires that you use Automake, but (in contrast
with ‘nonrecursive’) uses the more usual device of starting another make
process in the ‘libltdl’ subdirectory. To use this mode, you should add
to your ‘configure.ac’:

Chapter 11: Using libltdl 67

AM_INIT_AUTOMAKE
AC_CONFIG_HEADERS([config.h])
LT_CONFIG_LTDL_DIR([libltdl])
LT_INIT([dlopen])
LTDL_INIT([recursive])
AC_CONFIG_FILES([libltdl/Makefile])

Again, you have to use a config header, but it may have a name different
than ‘config.h’ if you like.
Also, add this to your ‘Makefile.am’:

SUBDIRS = libltdl

‘subproject’
This mode is the default unless you explicitly add recursive or
nonrecursive to your LTDL_INIT options; subproject is the only mode
supported by previous releases of libltdl. Even if you do not use Autoconf
in the parent project, then, in ‘subproject’ mode, still libltdl
contains all the necessary files to configure and build itself – you just
need to arrange for your build system to call ‘libltdl/configure’ with
appropriate options, and then run make in the libltdl subdirectory.
If you are using Autoconf and Automake, then you will need to add the
following to your ‘configure.ac’:

LT_CONFIG_LTDL_DIR([libltdl])
LTDL_INIT

and to ‘Makefile.am’:
SUBDIRS = libltdl

Aside from setting the libltdl build mode, there are other keywords that you can pass
to LTDL_INIT to modify its behavior when ‘--with-included-ltdl’ has been given:

‘convenience’
This is the default unless you explicitly add installable to your LTDL_
INIT options.
This keyword will cause options to be passed to the configure script in
the subdirectory named by LT_CONFIG_LTDL_DIR in order to cause it to
be built as a convenience library. If you’re not using automake, you will
need to define top_build_prefix, top_builddir, and top_srcdir in
your makefile so that LIBLTDL, LTDLDEPS, and LTDLINCL expand correctly.
One advantage of the convenience library is that it is not installed, so
the fact that you use libltdl will not be apparent to the user, and it
won’t overwrite a pre-installed version of libltdl the system might al-
ready have in the installation directory. On the other hand, if you want
to upgrade libltdl for any reason (e.g. a bugfix) you’ll have to recom-
pile your package instead of just replacing the shared installed version of
libltdl. However, if your programs or libraries are linked with other
libraries that use such a pre-installed version of libltdl, you may get
linker errors or run-time crashes. Another problem is that you cannot
link the convenience library into more than one libtool library, then link

Chapter 11: Using libltdl 68

a single program with those libraries, because you may get duplicate sym-
bols. In general you can safely use the convenience library in programs
that don’t depend on other libraries that might use libltdl too.

‘installable’
This keyword will pass options to the configure script in the subdirec-
tory named by LT_CONFIG_LTDL_DIR in order to cause it to be built as an
installable library. If you’re not using automake, you will need to define
top_build_prefix, top_builddir and top_srcdir in your makefile so
that LIBLTDL, LTDLDEPS, and LTDLINCL are expanded properly.
Be aware that you could overwrite another libltdl already installed to
the same directory if you use this option.

Whatever method you use, ‘LTDL_INIT’ will define the shell variable LIBLTDL to the
link flag that you should use to link with libltdl, the shell variable LTDLDEPS to the files
that can be used as a dependency in ‘Makefile’ rules, and the shell variable LTDLINCL to
the preprocessor flag that you should use to compile programs that include ‘ltdl.h’. So,
when you want to link a program with libltdl, be it a convenience, installed or installable
library, just use ‘$(LTDLINCL)’ for preprocessing and compilation, and ‘$(LIBLTDL)’ for
linking.
• If your package is built using an installed version of libltdl, LIBLTDL will be set

to the compiler flags needed to link against the installed library, LTDLDEPS will be
empty, and LTDLINCL will be set to the compiler flags needed to find the libltdl
header files.

• If your package is built using the convenience libltdl, LIBLTDL and LTDLDEPS will be
the pathname for the convenience version of libltdl (starting with ‘${top_builddir}/’
or ‘${top_build_prefix}’) and LTDLINCL will be ‘-I’ followed by the directory that
contains ‘ltdl.h’ (starting with ‘${top_srcdir}/’).

• If an installable version of the included libltdl is being built, its pathname starting
with ‘${top_builddir}/’ or ‘${top_build_prefix}’, will be stored in LIBLTDL and
LTDLDEPS, and LTDLINCL will be set just like in the case of convenience library.

You should probably also use the ‘dlopen’ option to LT_INIT in your ‘configure.ac’,
otherwise libtool will assume no dlopening mechanism is supported, and revert to
dlpreopening, which is probably not what you want. Avoid using the ‘-static’,
‘-static-libtool-libs’, or ‘-all-static’ switches when linking programs with libltdl.
This will not work on all platforms, because the dlopening functions may not be available
for static linking.

The following example shows you how to embed an installable libltdl in your package.
In order to use the convenience variant, just replace the LTDL_INIT option ‘installable’
with ‘convenience’. We assume that libltdl was embedded using ‘libtoolize --ltdl’.

configure.ac:
...
Name the subdirectory that contains libltdl sources
LT_CONFIG_LTDL_DIR([libltdl])

Configure libtool with dlopen support if possible

Chapter 11: Using libltdl 69

LT_INIT([dlopen])

Enable building of the installable libltdl library
LTDL_INIT([installable])
...

Makefile.am:
...
SUBDIRS = libltdl

AM_CPPFLAGS = $(LTDLINCL)

myprog_LDFLAGS = -export-dynamic
myprog_LDADD = $(LIBLTDL) -dlopen self -dlopen foo1.la
myprog_DEPENDENCIES = $(LTDLDEPS) foo1.la
...

[Macro]LTDL_INSTALLABLE
[Macro]AC_LIBLTDL_INSTALLABLE

These macros are deprecated, the ‘installable’ option to LTDL_INIT should be used
instead.

[Macro]LTDL_CONVENIENCE
[Macro]AC_LIBLTDL_CONVENIENCE

These macros are deprecated, the ‘convenience’ option to LTDL_INIT should be used
instead.

Chapter 12: Libtool’s trace interface 70

12 Libtool’s trace interface

This section describes macros whose sole purpose is to be traced using Autoconf’s ‘--trace’
option (see section “The Autoconf Manual” in The Autoconf Manual) to query the Libtool
configuration of a project. These macros are called by Libtool internals and should never
be called by user code; they should only be traced.

[Macro]LT_SUPPORTED_TAG (tag)
This macro is called once for each language enabled in the package. Its only argument,
tag, is the tag-name corresponding to the language (see Section 6.2 [Tags], page 35).
You can therefore retrieve the list of all tags enabled in a project using the following
command:

autoconf --trace ’LT_SUPPORTED_TAG:$1’

Chapter 13: Troubleshooting 71

13 Troubleshooting

Libtool is under constant development, changing to remain up-to-date with modern oper-
ating systems. If libtool doesn’t work the way you think it should on your platform, you
should read this chapter to help determine what the problem is, and how to resolve it.

13.1 The libtool test suite

Libtool comes with two integrated sets of tests to check that your build is sane, that test its
capabilities, and report obvious bugs in the libtool program. These tests, too, are constantly
evolving, based on past problems with libtool, and known deficiencies in other operating
systems.

As described in the ‘README’ file, you may run make -k check after you have built libtool
(possibly before you install it) in order to make sure that it meets basic functional require-
ments.

13.1.1 Description of test suite

Here is a list of the current programs in the old test suite, and what they test for:

‘cdemo-conf.test’
‘cdemo-exec.test’
‘cdemo-make.test’
‘cdemo-static.test’
‘cdemo-shared.test’
‘cdemo-undef.test’

These programs check to see that the ‘tests/cdemo’ subdirectory of the libtool
distribution can be configured and built correctly.

The ‘tests/cdemo’ subdirectory contains a demonstration of libtool conve-
nience libraries, a mechanism that allows build-time static libraries to be cre-
ated, in a way that their components can be later linked into programs or other
libraries, even shared ones.

The tests ‘cdemo-make.test’ and ‘cdemo-exec.test’ are executed three
times, under three different libtool configurations: ‘cdemo-conf.test’
configures ‘cdemo/libtool’ to build both static and shared libraries (the
default for platforms that support both), ‘cdemo-static.test’ builds only
static libraries (‘--disable-shared’), and ‘cdemo-shared.test’ builds only
shared libraries (‘--disable-static’).

The test ‘cdemo-undef.test’ tests the generation of shared libraries with un-
defined symbols on systems that allow this.

Chapter 13: Troubleshooting 72

‘demo-conf.test’
‘demo-exec.test’
‘demo-inst.test’
‘demo-make.test’
‘demo-unst.test’
‘demo-static.test’
‘demo-shared.test’
‘demo-nofast.test’
‘demo-pic.test’
‘demo-nopic.test’

These programs check to see that the ‘tests/demo’ subdirectory of the libtool
distribution can be configured, built, installed, and uninstalled correctly.

The ‘tests/demo’ subdirectory contains a demonstration of a trivial
package that uses libtool. The tests ‘demo-make.test’, ‘demo-exec.test’,
‘demo-inst.test’ and ‘demo-unst.test’ are executed four times,
under four different libtool configurations: ‘demo-conf.test’ con-
figures ‘demo/libtool’ to build both static and shared libraries,
‘demo-static.test’ builds only static libraries (‘--disable-shared’), and
‘demo-shared.test’ builds only shared libraries (‘--disable-static’).
‘demo-nofast.test’ configures ‘demo/libtool’ to disable the fast-install mode
(‘--enable-fast-install=no’). ‘demo-pic.test’ configures ‘demo/libtool’
to prefer building pic code (‘--with-pic’), ‘demo-nopic.test’ to prefer
non-pic code (‘--without-pic’).

‘demo-deplibs.test’
Many systems cannot link static libraries into shared libraries. libtool uses
a deplibs_check_method to prevent such cases. This tests checks whether
libtool’s deplibs_check_method works properly.

‘demo-hardcode.test’
On all systems with shared libraries, the location of the library can be encoded
in executables that are linked against it see Section 3.3 [Linking executables],
page 7. This test checks the conditions under which your system linker hard-
codes the library location, and guarantees that they correspond to libtool’s own
notion of how your linker behaves.

‘demo-relink.test’
‘depdemo-relink.test’

These tests check whether variable shlibpath overrides runpath is properly set.
If the test fails and VERBOSE is set, it will indicate what the variable should
have been set to.

‘demo-noinst-link.test’
Checks whether libtool will not try to link with a previously installed version
of a library when it should be linking with a just-built one.

Chapter 13: Troubleshooting 73

‘depdemo-conf.test’
‘depdemo-exec.test’
‘depdemo-inst.test’
‘depdemo-make.test’
‘depdemo-unst.test’
‘depdemo-static.test’
‘depdemo-shared.test’
‘depdemo-nofast.test’

These programs check to see that the ‘tests/depdemo’ subdirectory of the
libtool distribution can be configured, built, installed, and uninstalled correctly.

The ‘tests/depdemo’ subdirectory contains a demonstration of inter-library de-
pendencies with libtool. The test programs link some interdependent libraries.

The tests ‘depdemo-make.test’, ‘depdemo-exec.test’, ‘depdemo-inst.test’
and ‘depdemo-unst.test’ are executed four times, under four different
libtool configurations: ‘depdemo-conf.test’ configures ‘depdemo/libtool’ to
build both static and shared libraries, ‘depdemo-static.test’ builds only
static libraries (‘--disable-shared’), and ‘depdemo-shared.test’ builds
only shared libraries (‘--disable-static’). ‘depdemo-nofast.test’
configures ‘depdemo/libtool’ to disable the fast-install mode
(‘--enable-fast-install=no’.

‘mdemo-conf.test’
‘mdemo-exec.test’
‘mdemo-inst.test’
‘mdemo-make.test’
‘mdemo-unst.test’
‘mdemo-static.test’
‘mdemo-shared.test’

These programs check to see that the ‘tests/mdemo’ subdirectory of the libtool
distribution can be configured, built, installed, and uninstalled correctly.

The ‘tests/mdemo’ subdirectory contains a demonstration of a package that
uses libtool and the system independent dlopen wrapper ‘libltdl’ to load
modules. The library ‘libltdl’ provides a dlopen wrapper for various platforms
(Linux, Solaris, HP/UX etc.) including support for dlpreopened modules (see
Section 10.2 [Dlpreopening], page 44).

The tests ‘mdemo-make.test’, ‘mdemo-exec.test’, ‘mdemo-inst.test’ and
‘mdemo-unst.test’ are executed three times, under three different libtool
configurations: ‘mdemo-conf.test’ configures ‘mdemo/libtool’ to build both
static and shared libraries, ‘mdemo-static.test’ builds only static libraries
(‘--disable-shared’), and ‘mdemo-shared.test’ builds only shared libraries
(‘--disable-static’).

‘mdemo-dryrun.test’
This test checks whether libtool’s ‘--dry-run’ mode works properly.

Chapter 13: Troubleshooting 74

‘mdemo2-conf.test’
‘mdemo2-exec.test’
‘mdemo2-make.test’

These programs check to see that the ‘tests/mdemo2’ subdirectory of the libtool
distribution can be configured, built, and executed correctly.
The ‘tests/mdemo2’ directory contains a demonstration of a package that at-
tempts to link with a library (from the ‘tests/mdemo’ directory) that itself does
dlopening of libtool modules.

‘link.test’
This test guarantees that linking directly against a non-libtool static library
works properly.

‘link-2.test’
This test makes sure that files ending in ‘.lo’ are never linked directly into a
program file.

‘nomode.test’
Check whether we can actually get help for libtool.

‘objectlist.test’
Check that a nonexistent objectlist file is properly detected.

‘pdemo-conf.test’
‘pdemo-exec.test’
‘pdemo-inst.test’
‘pdemo-make.test’

These programs check to see that the ‘tests/pdemo’ subdirectory of the libtool
distribution can be configured, built, and executed correctly.
The ‘pdemo-conf.test’ lowers the max cmd len variable in the generated
libtool script to test the measures to evade command line length limitations.

‘quote.test’
This program checks libtool’s metacharacter quoting.

‘sh.test’ Checks for some nonportable or dubious or undesired shell constructs in shell
scripts.

‘suffix.test’
When other programming languages are used with libtool (see Chapter 6 [Other
languages], page 35), the source files may end in suffixes other than ‘.c’. This
test validates that libtool can handle suffixes for all the file types that it sup-
ports, and that it fails when the suffix is invalid.

‘tagdemo-conf.test’
‘tagdemo-exec.test’
‘tagdemo-make.test’
‘tagdemo-static.test’
‘tagdemo-shared.test’
‘tagdemo-undef.test’

These programs check to see that the ‘tests/tagdemo’ subdirectory of the
libtool distribution can be configured, built, and executed correctly.

Chapter 13: Troubleshooting 75

The ‘tests/tagdemo’ directory contains a demonstration of a package that
uses libtool’s multi-language support through configuration tags. It generates
a library from C++ sources, which is then linked to a C++ program.

‘f77demo-conf.test’
‘f77demo-exec.test’
‘f77demo-make.test’
‘f77demo-static.test’
‘f77demo-shared.test’

These programs check to see that the ‘tests/f77demo’ subdirectory of the
libtool distribution can be configured, built, and executed correctly.

The ‘tests/f77demo’ tests test Fortran 77 support in libtool by creating li-
braries from Fortran 77 sources, and mixed Fortran and C sources, and a For-
tran 77 program to use the former library, and a C program to use the latter
library.

‘fcdemo-conf.test’
‘fcdemo-exec.test’
‘fcdemo-make.test’
‘fcdemo-static.test’
‘fcdemo-shared.test’

These programs check to see that the ‘tests/fcdemo’ subdirectory of the libtool
distribution can be configured, built, and executed correctly.

The ‘tests/fcdemo’ is similar to the ‘tests/f77demo’ directory, except that
Fortran 90 is used in combination with the ‘FC’ interface provided by Autoconf
and Automake.

13.1.2 When tests fail

Each of the tests in the old test suite are designed to produce no output when they are run
via make check. The exit status of each program tells the ‘Makefile’ whether or not the
test succeeded.

If a test fails, it means that there is either a programming error in libtool, or in the test
program itself.

To investigate a particular test, you may run it directly, as you would a normal program.
When the test is invoked in this way, it produces output that may be useful in determining
what the problem is.

Another way to have the test programs produce output is to set the VERBOSE environ-
ment variable to ‘yes’ before running them. For example, env VERBOSE=yes make check

runs all the tests, and has each of them display debugging information.

The new, Autotest-based test suite produces as output a file ‘tests/testsuite.log’
which contains information about failed tests.

You can pass options to the test suite through the make variable TESTSUITEFLAGS
(see section “The Autoconf Manual” in The Autoconf Manual).

Chapter 13: Troubleshooting 76

13.2 Reporting bugs

If you think you have discovered a bug in libtool, you should think twice: the libtool
maintainer is notorious for passing the buck (or maybe that should be “passing the bug”).
Libtool was invented to fix known deficiencies in shared library implementations, so, in a
way, most of the bugs in libtool are actually bugs in other operating systems. However,
the libtool maintainer would definitely be happy to add support for somebody else’s buggy
operating system. [I wish there was a good way to do winking smiley-faces in Texinfo.]

Genuine bugs in libtool include problems with shell script portability, documentation
errors, and failures in the test suite (see Section 13.1 [Libtool test suite], page 71).

First, check the documentation and help screens to make sure that the behaviour you
think is a problem is not already mentioned as a feature.

Then, you should read the Emacs guide to reporting bugs (see section “Reporting Bugs”
in The Emacs Manual). Some of the details listed there are specific to Emacs, but the
principle behind them is a general one.

Finally, send a bug report to the Libtool bug reporting address bug-libtool@gnu.org
with any appropriate facts, such as test suite output (see Section 13.1.2 [When tests fail],
page 75), all the details needed to reproduce the bug, and a brief description of why you
think the behaviour is a bug. Be sure to include the word “libtool” in the subject line, as well
as the version number you are using (which can be found by typing libtool --version).

mailto:bug-libtool@gnu.org

Chapter 14: Maintenance notes for libtool 77

14 Maintenance notes for libtool

This chapter contains information that the libtool maintainer finds important. It will be
of no use to you unless you are considering porting libtool to new systems, or writing your
own libtool.

14.1 Porting libtool to new systems

Before you embark on porting libtool to an unsupported system, it is worthwhile to send e-
mail to the Libtool mailing list libtool@gnu.org, to make sure that you are not duplicating
existing work.

If you find that any porting documentation is missing, please complain! Complaints
with patches and improvements to the documentation, or to libtool itself, are more than
welcome.

14.1.1 Information sources

Once it is clear that a new port is necessary, you’ll generally need the following information:

canonical system name
You need the output of config.guess for this system, so that you can make
changes to the libtool configuration process without affecting other systems.

man pages for ld and cc
These generally describe what flags are used to generate pic, to create shared
libraries, and to link against only static libraries. You may need to follow some
cross references to find the information that is required.

man pages for ld.so, rtld, or equivalent
These are a valuable resource for understanding how shared libraries are loaded
on the system.

man page for ldconfig, or equivalent
This page usually describes how to install shared libraries.

output from ls -l /lib /usr/lib

This shows the naming convention for shared libraries on the system, including
which names should be symbolic links.

any additional documentation
Some systems have special documentation on how to build and install shared
libraries.

If you know how to program the Bourne shell, then you can complete the port yourself;
otherwise, you’ll have to find somebody with the relevant skills who will do the work. People
on the libtool mailing list are usually willing to volunteer to help you with new ports, so
you can send the information to them.

To do the port yourself, you’ll definitely need to modify the libtool.m4 macros in order
to make platform-specific changes to the configuration process. You should search that file
for the PORTME keyword, which will give you some hints on what you’ll need to change.
In general, all that is involved is modifying the appropriate configuration variables (see
Section 14.4 [libtool script contents], page 84).

mailto:libtool@gnu.org

Chapter 14: Maintenance notes for libtool 78

Your best bet is to find an already-supported system that is similar to yours, and make
your changes based on that. In some cases, however, your system will differ significantly
from every other supported system, and it may be necessary to add new configuration
variables, and modify the ltmain.in script accordingly. Be sure to write to the mailing list
before you make changes to ltmain.in, since they may have advice on the most effective
way of accomplishing what you want.

14.1.2 Porting inter-library dependencies support

Since version 1.2c, libtool has re-introduced the ability to do inter-library dependency on
some platforms, thanks to a patch by Toshio Kuratomi badger@prtr-13.ucsc.edu. Here’s
a shortened version of the message that contained his patch:

The basic architecture is this: in ‘libtool.m4’, the person who writes libtool makes
sure ‘$deplibs’ is included in ‘$archive_cmds’ somewhere and also sets the variable
‘$deplibs_check_method’, and maybe ‘$file_magic_cmd’ when ‘deplibs_check_method’
is file magic.

‘deplibs_check_method’ can be one of five things:

‘file_magic [regex]’
looks in the library link path for libraries that have the right libname. Then
it runs ‘$file_magic_cmd’ on the library and checks for a match against
the extended regular expression regex. When file magic test file is set by
‘libtool.m4’, it is used as an argument to ‘$file_magic_cmd’ in order to
verify whether the regular expression matches its output, and warn the user
otherwise.

‘test_compile’
just checks whether it is possible to link a program out of a list of libraries, and
checks which of those are listed in the output of ldd. It is currently unused,
and will probably be dropped in the future.

‘pass_all’
will pass everything without any checking. This may work on platforms in
which code is position-independent by default and inter-library dependencies
are properly supported by the dynamic linker, for example, on DEC OSF/1 3
and 4.

‘none’ It causes deplibs to be reassigned ‘deplibs=""’. That way ‘archive_cmds’ can
contain deplibs on all platforms, but not have deplibs used unless needed.

‘unknown’ is the default for all systems unless overridden in ‘libtool.m4’. It is the same
as ‘none’, but it documents that we really don’t know what the correct value
should be, and we welcome patches that improve it.

Then in ‘ltmain.in’ we have the real workhorse: a little initialization and postprocessing
(to setup/release variables for use with eval echo libname spec etc.) and a case statement
that decides the method that is being used. This is the real code. . . I wish I could condense
it a little more, but I don’t think I can without function calls. I’ve mostly optimized it
(moved things out of loops, etc.) but there is probably some fat left. I thought I should
stop while I was ahead, work on whatever bugs you discover, etc. before thinking about
more than obvious optimizations.

mailto:badger@prtr-13.ucsc.edu

Chapter 14: Maintenance notes for libtool 79

14.2 Tested platforms

This table describes when libtool was last known to be tested on platforms where it claims
to support shared libraries:

canonical host name compiler libtool results
(tools versions) release

alpha-dec-osf5.1 cc 1.3e ok (1.910)
alpha-dec-osf4.0f gcc 1.3e ok (1.910)
alpha-dec-osf4.0f cc 1.3e ok (1.910)
alpha-dec-osf3.2 gcc 0.8 ok
alpha-dec-osf3.2 cc 0.8 ok
alpha-dec-osf2.1 gcc 1.2f NS
alpha*-unknown-linux-gnu gcc 1.3b ok
(egcs-1.1.2, GNU ld 2.9.1.0.23)

hppa2.0w-hp-hpux11.00 cc 1.2f ok
hppa2.0-hp-hpux10.20 cc 1.3.2 ok
hppa1.1-hp-hpux10.20 gcc 1.2f ok
hppa1.1-hp-hpux10.20 cc 1.3c ok (1.821)
hppa1.1-hp-hpux10.10 gcc 1.2f ok
hppa1.1-hp-hpux10.10 cc 1.2f ok
hppa1.1-hp-hpux9.07 gcc 1.2f ok
hppa1.1-hp-hpux9.07 cc 1.2f ok
hppa1.1-hp-hpux9.05 gcc 1.2f ok
hppa1.1-hp-hpux9.05 cc 1.2f ok
hppa1.1-hp-hpux9.01 gcc 1.2f ok
hppa1.1-hp-hpux9.01 cc 1.2f ok
i*86-*-beos gcc 1.2f ok
i*86-*-bsdi4.0.1 gcc 1.3c ok
(gcc-2.7.2.1)

i*86-*-bsdi4.0 gcc 1.2f ok
i*86-*-bsdi3.1 gcc 1.2e NS
i*86-*-bsdi3.0 gcc 1.2e NS
i*86-*-bsdi2.1 gcc 1.2e NS
i*86-pc-cygwin gcc 1.3b NS
(egcs-1.1 stock b20.1 compiler)

i*86-*-dguxR4.20MU01 gcc 1.2 ok
i*86-*-freebsd4.3 gcc 1.3e ok (1.912)
i*86-*-freebsdelf4.0 gcc 1.3c ok
(egcs-1.1.2)

i*86-*-freebsdelf3.2 gcc 1.3c ok
(gcc-2.7.2.1)

i*86-*-freebsdelf3.1 gcc 1.3c ok
(gcc-2.7.2.1)

i*86-*-freebsdelf3.0 gcc 1.3c ok
i*86-*-freebsd3.0 gcc 1.2e ok

Chapter 14: Maintenance notes for libtool 80

i*86-*-freebsd2.2.8 gcc 1.3c ok
(gcc-2.7.2.1)

i*86-*-freebsd2.2.6 gcc 1.3b ok
(egcs-1.1 & gcc-2.7.2.1, native ld)

i*86-*-freebsd2.1.5 gcc 0.5 ok
i*86-*-netbsd1.5 gcc 1.3e ok (1.901)
(egcs-1.1.2)

i*86-*-netbsd1.4 gcc 1.3c ok
(egcs-1.1.1)

i*86-*-netbsd1.4.3A gcc 1.3e ok (1.901)
i*86-*-netbsd1.3.3 gcc 1.3c ok
(gcc-2.7.2.2+myc2)

i*86-*-netbsd1.3.2 gcc 1.2e ok
i*86-*-netbsd1.3I gcc 1.2e ok
(egcs 1.1?)

i*86-*-netbsd1.2 gcc 0.9g ok
i*86-*-linux-gnu gcc 1.3e ok (1.901)
(Red Hat 7.0, gcc "2.96")

i*86-*-linux-gnu gcc 1.3e ok (1.911)
(SuSE 7.0, gcc 2.95.2)

i*86-*-linux-gnulibc1 gcc 1.2f ok
i*86-*-openbsd2.5 gcc 1.3c ok
(gcc-2.8.1)

i*86-*-openbsd2.4 gcc 1.3c ok
(gcc-2.8.1)

i*86-*-solaris2.7 gcc 1.3b ok
(egcs-1.1.2, native ld)

i*86-*-solaris2.6 gcc 1.2f ok
i*86-*-solaris2.5.1 gcc 1.2f ok
i*86-ncr-sysv4.3.03 gcc 1.2f ok
i*86-ncr-sysv4.3.03 cc 1.2e ok
(cc -Hnocopyr)

i*86-pc-sco3.2v5.0.5 cc 1.3c ok
i*86-pc-sco3.2v5.0.5 gcc 1.3c ok
(gcc 95q4c)

i*86-pc-sco3.2v5.0.5 gcc 1.3c ok
(egcs-1.1.2)

i*86-sco-sysv5uw7.1.1 gcc 1.3e ok (1.901)
(gcc-2.95.2, SCO linker)

i*86-UnixWare7.1.0-sysv5 cc 1.3c ok
i*86-UnixWare7.1.0-sysv5 gcc 1.3c ok
(egcs-1.1.1)

m68k-next-nextstep3 gcc 1.2f NS
m68k-sun-sunos4.1.1 gcc 1.2f NS
(gcc-2.5.7)

m88k-dg-dguxR4.12TMU01 gcc 1.2 ok
m88k-motorola-sysv4 gcc 1.3 ok

Chapter 14: Maintenance notes for libtool 81

(egcs-1.1.2)
mips-sgi-irix6.5 gcc 1.2f ok
(gcc-2.8.1)

mips-sgi-irix6.4 gcc 1.2f ok
mips-sgi-irix6.3 gcc 1.3b ok
(egcs-1.1.2, native ld)

mips-sgi-irix6.3 cc 1.3b ok
(cc 7.0)

mips-sgi-irix6.2 gcc 1.2f ok
mips-sgi-irix6.2 cc 0.9 ok
mips-sgi-irix5.3 gcc 1.2f ok
(egcs-1.1.1)

mips-sgi-irix5.3 gcc 1.2f NS
(gcc-2.6.3)

mips-sgi-irix5.3 cc 0.8 ok
mips-sgi-irix5.2 gcc 1.3b ok
(egcs-1.1.2, native ld)

mips-sgi-irix5.2 cc 1.3b ok
(cc 3.18)

mips-sni-sysv4 cc 1.3.5 ok
(Siemens C-compiler)

mips-sni-sysv4 gcc 1.3.5 ok
(gcc-2.7.2.3, GNU assembler 2.8.1, native ld)

mipsel-unknown-openbsd2.1 gcc 1.0 ok
powerpc-apple-darwin6.4 gcc 1.5 ok
(apple dev tools released 12/2002)
powerpc-ibm-aix4.3.1.0 gcc 1.2f ok
(egcs-1.1.1)

powerpc-ibm-aix4.2.1.0 gcc 1.2f ok
(egcs-1.1.1)

powerpc-ibm-aix4.1.5.0 gcc 1.2f ok
(egcs-1.1.1)

powerpc-ibm-aix4.1.5.0 gcc 1.2f NS
(gcc-2.8.1)

powerpc-ibm-aix4.1.4.0 gcc 1.0 ok
powerpc-ibm-aix4.1.4.0 xlc 1.0i ok
rs6000-ibm-aix4.1.5.0 gcc 1.2f ok
(gcc-2.7.2)

rs6000-ibm-aix4.1.4.0 gcc 1.2f ok
(gcc-2.7.2)

rs6000-ibm-aix3.2.5 gcc 1.0i ok
rs6000-ibm-aix3.2.5 xlc 1.0i ok
sparc-sun-solaris2.8 gcc 1.3e ok (1.913)
(gcc-2.95.3 & native ld)

sparc-sun-solaris2.7 gcc 1.3e ok (1.913)
(gcc-2.95.3 & native ld)

sparc-sun-solaris2.6 gcc 1.3e ok (1.913)

Chapter 14: Maintenance notes for libtool 82

(gcc-2.95.3 & native ld)
sparc-sun-solaris2.5.1 gcc 1.3e ok (1.911)
sparc-sun-solaris2.5 gcc 1.3b ok
(egcs-1.1.2, GNU ld 2.9.1 & native ld)

sparc-sun-solaris2.5 cc 1.3b ok
(SC 3.0.1)

sparc-sun-solaris2.4 gcc 1.0a ok
sparc-sun-solaris2.4 cc 1.0a ok
sparc-sun-solaris2.3 gcc 1.2f ok
sparc-sun-sunos4.1.4 gcc 1.2f ok
sparc-sun-sunos4.1.4 cc 1.0f ok
sparc-sun-sunos4.1.3_U1 gcc 1.2f ok
sparc-sun-sunos4.1.3C gcc 1.2f ok
sparc-sun-sunos4.1.3 gcc 1.3b ok
(egcs-1.1.2, GNU ld 2.9.1 & native ld)

sparc-sun-sunos4.1.3 cc 1.3b ok
sparc-unknown-bsdi4.0 gcc 1.2c ok
sparc-unknown-linux-gnulibc1 gcc 1.2f ok
sparc-unknown-linux-gnu gcc 1.3b ok
(egcs-1.1.2, GNU ld 2.9.1.0.23)

sparc64-unknown-linux-gnu gcc 1.2f ok

Notes:
- "ok" means "all tests passed".
- "NS" means "Not Shared", but OK for static libraries

Note: The vendor-distributed HP-UX sed(1) programs are horribly broken, and can-
not handle libtool’s requirements, so users may report unusual problems. There is no
workaround except to install a working sed (such as gnu sed) on these systems.

Note: The vendor-distributed NCR MP-RAS cc programs emits copyright on standard
error that confuse tests on size of ‘conftest.err’. The workaround is to specify CC when
run configure with CC=’cc -Hnocopyr’.

14.3 Platform quirks

This section is dedicated to the sanity of the libtool maintainers. It describes the programs
that libtool uses, how they vary from system to system, and how to test for them.

Because libtool is a shell script, it can be difficult to understand just by reading it from
top to bottom. This section helps show why libtool does things a certain way. Combined
with the scripts themselves, you should have a better sense of how to improve libtool, or
write your own.

14.3.1 References

The following is a list of valuable documentation references:

• SGI’s IRIX Manual Pages can be found at
http://techpubs.sgi.com/cgi-bin/infosrch.cgi?cmd=browse&db=man.

http://techpubs.sgi.com/cgi-bin/infosrch.cgi?cmd=browse&db=man

Chapter 14: Maintenance notes for libtool 83

• Sun’s free service area (http://www.sun.com/service/online/free.html) and doc-
umentation server (http://docs.sun.com/).

• Compaq’s Tru64 UNIX online documentation is at
(http://tru64unix.compaq.com/faqs/publications/pub_page/doc_list.html)
with C++ documentation at
(http://tru64unix.compaq.com/cplus/docs/index.htm).

• Hewlett-Packard has online documentation at (http://docs.hp.com/index.html).
• IBM has online documentation at (http://www.rs6000.ibm.com/resource/aix_

resource/Pubs/).

14.3.2 Compilers

The only compiler characteristics that affect libtool are the flags needed (if any) to generate
pic objects. In general, if a C compiler supports certain pic flags, then any derivative
compilers support the same flags. Until there are some noteworthy exceptions to this rule,
this section will document only C compilers.

The following C compilers have standard command line options, regardless of the plat-
form:

gcc

This is the gnu C compiler, which is also the system compiler for many free
operating systems (FreeBSD, gnu/Hurd, gnu/Linux, Lites, NetBSD, and
OpenBSD, to name a few).
The ‘-fpic’ or ‘-fPIC’ flags can be used to generate position-independent code.
‘-fPIC’ is guaranteed to generate working code, but the code is slower on m68k,
m88k, and Sparc chips. However, using ‘-fpic’ on those chips imposes arbitrary
size limits on the shared libraries.

The rest of this subsection lists compilers by the operating system that they are bundled
with:

aix3*
aix4* Most AIX compilers have no pic flags, since AIX (with the exception of AIX

for IA-64) runs on PowerPC and RS/6000 chips.1

hpux10* Use ‘+Z’ to generate pic.

osf3* Digital/UNIX 3.x does not have pic flags, at least not on the PowerPC platform.

solaris2*
Use ‘-KPIC’ to generate pic.

sunos4* Use ‘-PIC’ to generate pic.

14.3.3 Reloadable objects

On all known systems, a reloadable object can be created by running ld -r -o output.o

input1.o input2.o. This reloadable object may be treated as exactly equivalent to other
objects.

1 All code compiled for the PowerPC and RS/6000 chips (powerpc-*-*, powerpcle-*-*, and rs6000-*-*)
is position-independent, regardless of the operating system or compiler suite. So, “regular objects” can
be used to build shared libraries on these systems and no special pic compiler flags are required.

http://www.sun.com/service/online/free.html
http://docs.sun.com/
http://tru64unix.compaq.com/faqs/publications/pub_page/doc_list.html
http://tru64unix.compaq.com/cplus/docs/index.htm
http://docs.hp.com/index.html
http://www.rs6000.ibm.com/resource/aix_resource/Pubs/
http://www.rs6000.ibm.com/resource/aix_resource/Pubs/

Chapter 14: Maintenance notes for libtool 84

14.3.4 Multiple dependencies

On most modern platforms the order in which dependent libraries are listed has no effect on
object generation. In theory, there are platforms that require libraries that provide missing
symbols to other libraries to be listed after those libraries whose symbols they provide.

Particularly, if a pair of static archives each resolve some of the other’s symbols, it might
be necessary to list one of those archives both before and after the other one. Libtool does
not currently cope with this situation well, since duplicate libraries are removed from the
link line by default. Libtool provides the command line option ‘--preserve-dup-deps’ to
preserve all duplicate dependencies in cases where it is necessary.

14.3.5 Archivers

On all known systems, building a static library can be accomplished by running ar cru

libname.a obj1.o obj2.o ..., where the ‘.a’ file is the output library, and each ‘.o’ file
is an object file.

On all known systems, if there is a program named ranlib, then it must be used to
“bless” the created library before linking against it, with the ranlib libname.a command.
Some systems, like Irix, use the ar ts command, instead.

14.4 libtool script contents

Since version 1.4, the libtool script is generated by configure (see Section 5.4 [Config-
uring], page 24). In earlier versions, configure achieved this by calling a helper script
called ‘ltconfig’. From libtool version 0.7 to 1.0, this script simply set shell variables,
then sourced the libtool backend, ltmain.sh. ltconfig from libtool version 1.1 through
1.3 inlined the contents of ltmain.sh into the generated libtool, which improved per-
formance on many systems. The tests that ‘ltconfig’ used to perform are now kept in
‘libtool.m4’ where they can be written using Autoconf. This has the runtime performance
benefits of inlined ltmain.sh, and improves the build time a little while considerably easing
the amount of raw shell code that used to need maintaining.

The convention used for naming variables that hold shell commands for delayed eval-
uation, is to use the suffix _cmd where a single line of valid shell script is needed, and
the suffix _cmds where multiple lines of shell script may be delayed for later evaluation.
By convention, _cmds variables delimit the evaluation units with the ~ character where
necessary.

Here is a listing of each of the configuration variables, and how they are used within
ltmain.sh (see Section 5.4 [Configuring], page 24):

[Variable]AR
The name of the system library archiver.

[Variable]CC
The name of the compiler used to configure libtool. This will always contain the
compiler for the current language (see Section 6.2 [Tags], page 35).

[Variable]ECHO
An echo program that does not interpret backslashes as an escape character. It may
be given only one argument, so due quoting is necessary.

Chapter 14: Maintenance notes for libtool 85

[Variable]LD
The name of the linker that libtool should use internally for reloadable linking and
possibly shared libraries.

[Variable]LTCC
[Variable]LTCFLAGS

The name of the C compiler and C compiler flags used to configure libtool.

[Variable]NM
The name of a BSD- or MS-compatible program that produces listings of global
symbols. For BSD nm, the symbols should be in one the following formats:

address C global-variable-name

address D global-variable-name

address T global-function-name

For MS dumpbin, the symbols should be in one of the following formats:
counter size UNDEF notype External | global-var

counter address section notype External | global-var

counter address section notype () External | global-func

The size of the global variables are not zero and the section of the global functions are
not "UNDEF". Symbols in "pick any" sections ("pick any" appears in the section
header) are not global either.

[Variable]RANLIB
Set to the name of the ranlib program, if any.

[Variable]allow_undefined_flag
The flag that is used by ‘archive_cmds’ in order to declare that there will be unre-
solved symbols in the resulting shared library. Empty, if no such flag is required. Set
to ‘unsupported’ if there is no way to generate a shared library with references to
symbols that aren’t defined in that library.

[Variable]always_export_symbols
Whether libtool should automatically generate a list of exported symbols using ex-
port symbols cmds before linking an archive. Set to ‘yes’ or ‘no’. Default is ‘no’.

[Variable]archive_cmds
[Variable]archive_expsym_cmds
[Variable]old_archive_cmds

Commands used to create shared libraries, shared libraries with ‘-export-symbols’
and static libraries, respectively.

[Variable]old_archive_from_new_cmds
If the shared library depends on a static library, ‘old_archive_from_new_cmds’ con-
tains the commands used to create that static library. If this variable is not empty,
‘old_archive_cmds’ is not used.

[Variable]old_archive_from_expsyms_cmds
If a static library must be created from the export symbol list in order to correctly link
with a shared library, ‘old_archive_from_expsyms_cmds’ contains the commands

Chapter 14: Maintenance notes for libtool 86

needed to create that static library. When these commands are executed, the variable
soname contains the name of the shared library in question, and the $objdir/$newlib
contains the path of the static library these commands should build. After execut-
ing these commands, libtool will proceed to link against $objdir/$newlib instead of
soname.

[Variable]build
[Variable]build_alias
[Variable]build_os

Set to the specified and canonical names of the system that libtool was built on.

[Variable]build_libtool_libs
Whether libtool should build shared libraries on this system. Set to ‘yes’ or ‘no’.

[Variable]build_old_libs
Whether libtool should build static libraries on this system. Set to ‘yes’ or ‘no’.

[Variable]compiler_c_o
Whether the compiler supports the ‘-c’ and ‘-o’ options simultaneously. Set to ‘yes’
or ‘no’.

[Variable]compiler_needs_object
Whether the compiler has to see an object listed on the command line in order to
successfully invoke the linker. If ‘no’, then a set of convenience archives or a set of
object file names can be passed via linker-specific options or linker scripts.

[Variable]dlopen_support
Whether dlopen is supported on the platform. Set to ‘yes’ or ‘no’.

[Variable]dlopen_self
Whether it is possible to dlopen the executable itself. Set to ‘yes’ or ‘no’.

[Variable]dlopen_self_static
Whether it is possible to dlopen the executable itself, when it is linked statically
(‘-all-static’). Set to ‘yes’ or ‘no’.

[Variable]exclude_expsyms
List of symbols that should not be listed in the preloaded symbols.

[Variable]export_dynamic_flag_spec
Compiler link flag that allows a dlopened shared library to reference symbols that are
defined in the program.

[Variable]export_symbols_cmds
Commands to extract exported symbols from libobjs to the file export symbols.

[Variable]extract_expsyms_cmds
Commands to extract the exported symbols list from a shared library.
These commands are executed if there is no file $objdir/$soname-def, and
should write the names of the exported symbols to that file, for the use of
‘old_archive_from_expsyms_cmds’.

Chapter 14: Maintenance notes for libtool 87

[Variable]fast_install
Determines whether libtool will privilege the installer or the developer. The as-
sumption is that installers will seldom run programs in the build tree, and the
developer will seldom install. This is only meaningful on platforms where shlib-
path overrides runpath is not ‘yes’, so fast install will be set to ‘needless’ in this
case. If fast install set to ‘yes’, libtool will create programs that search for installed li-
braries, and, if a program is run in the build tree, a new copy will be linked on-demand
to use the yet-to-be-installed libraries. If set to ‘no’, libtool will create programs that
use the yet-to-be-installed libraries, and will link a new copy of the program at in-
stall time. The default value is ‘yes’ or ‘needless’, depending on platform and
configuration flags, and it can be turned from ‘yes’ to ‘no’ with the configure flag
‘--disable-fast-install’.

On some systems, the linker always hardcodes paths to dependent libraries into the
output. In this case, fast install is never set to ‘yes’, and relinking at install time is
triggered. This also means that DESTDIR installation does not work as expected.

[Variable]finish_cmds
Commands to tell the dynamic linker how to find shared libraries in a specific direc-
tory.

[Variable]finish_eval
Same as finish cmds, except the commands are not displayed.

[Variable]fix_srcfile_path
Expression to fix the shell variable ‘$srcfile’ for the compiler.

[Variable]global_symbol_pipe
A pipeline that takes the output of NM, and produces a listing of raw symbols followed
by their C names. For example:

$ eval "$NM progname | $global_symbol_pipe"
D symbol1 C-symbol1

T symbol2 C-symbol2

C symbol3 C-symbol3

...
$

The first column contains the symbol type (used to tell data from code) but its
meaning is system dependent.

[Variable]global_symbol_to_cdecl
A pipeline that translates the output of global symbol pipe into proper C declara-
tions. Since some platforms, such as HP/UX, have linkers that differentiate code from
data, data symbols are declared as data, and code symbols are declared as functions.

[Variable]hardcode_action
Either ‘immediate’ or ‘relink’, depending on whether shared library paths can be
hardcoded into executables before they are installed, or if they need to be relinked.

Chapter 14: Maintenance notes for libtool 88

[Variable]hardcode_direct
Set to ‘yes’ or ‘no’, depending on whether the linker hardcodes directories if a li-
brary is directly specified on the command line (such as ‘dir/libname.a’) when
hardcode libdir flag spec is specified.

[Variable]hardcode_direct_absolute
Some architectures hardcode "absolute" library directories that can not be
overridden by shlibpath var when hardcode direct is ‘yes’. In that case set
hardcode direct absolute to ‘yes’, or otherwise ‘no’.

[Variable]hardcode_into_libs
Whether the platform supports hardcoding of run-paths into libraries. If enabled,
linking of programs will be much simpler but libraries will need to be relinked during
installation. Set to ‘yes’ or ‘no’.

[Variable]hardcode_libdir_flag_spec
Flag to hardcode a libdir variable into a binary, so that the dynamic linker searches
libdir for shared libraries at runtime. If it is empty, libtool will try to use some other
hardcoding mechanism.

[Variable]hardcode_libdir_separator
If the compiler only accepts a single hardcode libdir flag, then this variable contains
the string that should separate multiple arguments to that flag.

[Variable]hardcode_minus_L
Set to ‘yes’ or ‘no’, depending on whether the linker hardcodes directories specified
by ‘-L’ flags into the resulting executable when hardcode libdir flag spec is specified.

[Variable]hardcode_shlibpath_var
Set to ‘yes’ or ‘no’, depending on whether the linker hardcodes directories by
writing the contents of ‘$shlibpath_var’ into the resulting executable when
hardcode libdir flag spec is specified. Set to ‘unsupported’ if directories specified
by ‘$shlibpath_var’ are searched at run time, but not at link time.

[Variable]host
[Variable]host_alias
[Variable]host_os

Set to the specified and canonical names of the system that libtool was configured
for.

[Variable]include_expsyms
List of symbols that must always be exported when using export symbols.

[Variable]inherit_rpath
Whether the linker adds runtime paths of dependency libraries to the runtime path
list, requiring libtool to relink the output when installing. Set to ‘yes’ or ‘no’. Default
is ‘no’.

[Variable]libext
The standard old archive suffix (normally ‘a’).

Chapter 14: Maintenance notes for libtool 89

[Variable]libname_spec
The format of a library name prefix. On all Unix systems, static libraries are called
‘libname.a’, but on some systems (such as OS/2 or MS-DOS), the library is just
called ‘name.a’.

[Variable]library_names_spec
A list of shared library names. The first is the name of the file, the rest are symbolic
links to the file. The name in the list is the file name that the linker finds when given
‘-lname ’.

[Variable]link_all_deplibs
Whether libtool must link a program against all its dependency libraries. Set to ‘yes’
or ‘no’. Default is ‘unknown’, which is a synonym for ‘yes’.

[Variable]link_static_flag
Linker flag (passed through the C compiler) used to prevent dynamic linking.

[Variable]macro_version
[Variable]macro_revision

The release and CVS revision from which the libtool.m4 macros were taken. This is
used to ensure that macros and ltmain.sh correspond to the same Libtool version.

[Variable]max_cmd_len
The approximate longest command line that can be passed to ‘$SHELL’ without being
truncated, as computed by ‘LT_CMD_MAX_LEN’.

[Variable]need_lib_prefix
Whether we can dlopen modules without a ‘lib’ prefix. Set to ‘yes’ or ‘no’. By
default, it is ‘unknown’, which means the same as ‘yes’, but documents that we are
not really sure about it. ‘no’ means that it is possible to dlopen a module without
the ‘lib’ prefix.

[Variable]need_version
Whether versioning is required for libraries, i.e. whether the dynamic linker requires
a version suffix for all libraries. Set to ‘yes’ or ‘no’. By default, it is ‘unknown’, which
means the same as ‘yes’, but documents that we are not really sure about it.

[Variable]need_locks
Whether files must be locked to prevent conflicts when compiling simultaneously. Set
to ‘yes’ or ‘no’.

[Variable]no_builtin_flag
Compiler flag to disable builtin functions that conflict with declaring external global
symbols as char.

[Variable]no_undefined_flag
The flag that is used by ‘archive_cmds’ in order to declare that there will be no
unresolved symbols in the resulting shared library. Empty, if no such flag is required.

[Variable]objdir
The name of the directory that contains temporary libtool files.

Chapter 14: Maintenance notes for libtool 90

[Variable]objext
The standard object file suffix (normally ‘o’).

[Variable]pic_flag
Any additional compiler flags for building library object files.

[Variable]postinstall_cmds
[Variable]old_postinstall_cmds

Commands run after installing a shared or static library, respectively.

[Variable]postuninstall_cmds
[Variable]old_postuninstall_cmds

Commands run after uninstalling a shared or static library, respectively.

[Variable]reload_cmds
[Variable]reload_flag

Commands to create a reloadable object.

[Variable]runpath_var
The environment variable that tells the linker which directories to hardcode in the
resulting executable.

[Variable]shlibpath_overrides_runpath
Indicates whether it is possible to override the hard-coded library search path of a
program with an environment variable. If this is set to no, libtool may have to create
two copies of a program in the build tree, one to be installed and one to be run in
the build tree only. When each of these copies is created depends on the value of
fast_install. The default value is ‘unknown’, which is equivalent to ‘no’.

[Variable]shlibpath_var
The environment variable that tells the dynamic linker where to find shared libraries.

[Variable]soname_spec
The name coded into shared libraries, if different from the real name of the file.

[Variable]striplib
[Variable]old_striplib

Command to strip a shared (striplib) or static (old_striplib) library, respectively.
If these variables are empty, the strip flag in the install mode will be ignored for
libraries (see Section 4.4 [Install mode], page 19).

[Variable]sys_lib_dlsearch_path_spec
Expression to get the run-time system library search path. Directories that appear
in this list are never hard-coded into executables.

[Variable]sys_lib_search_path_spec
Expression to get the compile-time system library search path. This variable is used
by libtool when it has to test whether a certain library is shared or static. The
directories listed in shlibpath var are automatically appended to this list, every time
libtool runs (i.e., not at configuration time), because some linkers use this variable to
extend the library search path. Linker switches such as ‘-L’ also augment the search
path.

Chapter 14: Maintenance notes for libtool 91

[Variable]thread_safe_flag_spec
Linker flag (passed through the C compiler) used to generate thread-safe libraries.

[Variable]version_type
The library version numbering type. One of ‘libtool’, ‘freebsd-aout’,
‘freebsd-elf’, ‘irix’, ‘linux’, ‘osf’, ‘sunos’, ‘windows’, or ‘none’.

[Variable]whole_archive_flag_spec
Compiler flag to generate shared objects from convenience archives.

[Variable]wl
The C compiler flag that allows libtool to pass a flag directly to the linker. Used as:
${wl}some-flag .

Variables ending in ‘_cmds’ or ‘_eval’ contain a ‘~’-separated list of commands that are
evaled one after another. If any of the commands return a nonzero exit status, libtool
generally exits with an error message.

Variables ending in ‘_spec’ are evaled before being used by libtool.

14.5 Cheap tricks

Here are a few tricks that you can use in order to make maintainership easier:
• When people report bugs, ask them to use the ‘--config’, ‘--debug’, or ‘--features’

flags, if you think they will help you. These flags are there to help you get information
directly, rather than having to trust second-hand observation.

• Rather than reconfiguring libtool every time I make a change to ltmain.in, I keep a
permanent libtool script in my PATH, which sources ltmain.in directly.
The following steps describe how to create such a script, where /home/src/libtool
is the directory containing the libtool source tree, /home/src/libtool/libtool is a
libtool script that has been configured for your platform, and ~/bin is a directory in
your PATH :

trick$ cd ~/bin
trick$ sed ’s%^\(macro_version=\).*$%\1@VERSION@%;

s%^\(macro_revision=\).*$%\1@package_revision@%;
/^# ltmain\.sh/q’ /home/src/libtool/libtool > libtool

trick$ echo ’. /home/src/libtool/ltmain.in’ >> libtool
trick$ chmod +x libtool
trick$ libtool --version
ltmain.sh (GNU @PACKAGE@@TIMESTAMP@) @VERSION@

Copyright (C) 2008 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
trick$

The output of the final ‘libtool --version’ command shows that the ltmain.in script
is being used directly. Now, modify ~/bin/libtool or /home/src/libtool/ltmain.in
directly in order to test new changes without having to rerun configure.

Appendix A: GNU Free Documentation License 92

Appendix A GNU Free Documentation License

Version 1.2, November 2002
Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

Appendix A: GNU Free Documentation License 93

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.
The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.
A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.
A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.
The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and

Appendix A: GNU Free Documentation License 94

that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

Appendix A: GNU Free Documentation License 95

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

Appendix A: GNU Free Documentation License 96

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.
In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.
You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called

Appendix A: GNU Free Documentation License 97

an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Appendix A: GNU Free Documentation License 98

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Index 99

Index

(
(const char *loader_name) 63
(lt_dlloader *place) . 63
(void) . 55

-
-no-suppress, libtool compile mode option 6
-weak option . 48

.
‘.la’ files . 6
‘.libs’ subdirectory . 7
‘.lo’ files . 4

A
AC_CONFIG_AUX_DIR . 33
AC_CONFIG_MACRO_DIR . 33
AC_DISABLE_FAST_INSTALL 27
AC_DISABLE_SHARED . 27
AC_DISABLE_STATIC . 28
AC_ENABLE_SHARED . 27
AC_ENABLE_STATIC . 28
AC_LIBLTDL_CONVENIENCE . 69
AC_LIBLTDL_INSTALLABLE . 69
AC_LIBTOOL_DLOPEN . 27
AC_LIBTOOL_WIN32_DLL . 27
AC_PROG_LIBTOOL . 25
AC_WITH_LTDL . 65
aclocal . 29
allow_undefined_flag . 85
always_export_symbols . 85
AM_DISABLE_SHARED . 27
AM_DISABLE_STATIC . 28
AM_ENABLE_SHARED . 27
AM_ENABLE_STATIC . 28
AM_PROG_LIBTOOL . 25
application-level dynamic linking 44, 50
ar . 6
AR . 84
archive_cmds . 85
archive_expsym_cmds . 85
AS . 29
autoconf traces . 70
avoiding shared libraries . 34

B
bug reports. 76
buggy system linkers . 7
bugs, subtle ones caused by buggy linkers 7
build . 86

build_alias . 86
build_libtool_libs . 86
build_old_libs . 86
build_os . 86

C
C header files, portable . 41
C++, pitfalls . 35
C++, using . 35
C, not using . 35
CC . 28, 84
cdemo-conf.test . 71
cdemo-exec.test . 71
cdemo-make.test . 71
cdemo-shared.test . 71
cdemo-static.test. 71
cdemo-undef.test . 71
CFLAGS . 28
clean mode . 21
command options, libtool . 14
command options, libtoolize 31
compile mode . 15
compiler_c_o . 86
compiler_needs_object . 86
compiling object files . 4
complexity of library systems 2
config.guess . 31
config.sub . 31
configuring libtool . 24
convenience libraries . 12
CPPFLAGS . 28

D
debugging libraries . 34
definition of libraries . 3
demo-conf.test . 72
demo-deplibs.test . 72
demo-exec.test . 72
demo-hardcode.test . 72
demo-inst.test . 72
demo-make.test . 72
demo-nofast.test . 72
demo-noinst-link.test . 72
demo-nopic.test . 72
demo-pic.test . 72
demo-relink.test . 72
demo-shared.test. 72
demo-static.test . 72
demo-unst.test. 72
depdemo-conf.test . 73
depdemo-exec.test . 73
depdemo-inst.test . 73
depdemo-make.test . 73

Index 100

depdemo-nofast.test . 73
depdemo-relink.test . 72
depdemo-shared.test . 73
depdemo-static.test . 73
depdemo-unst.test . 73
dependencies between libraries 43
dependency versioning . 37
deplibs_check_method . 78
design issues . 1
design of library interfaces . 40
design philosophy . 1
developing libraries . 34
dlclose . 44, 50
dlerror . 50
DLLTOOL . 29
dlopen . 44, 50
dlopen_self . 86
dlopen_self_static . 86
dlopen_support . 86
dlopening modules . 44, 50
dlopening, pitfalls . 49
dlsym . 44, 50
double-compilation, avoiding 34
dynamic dependencies . 37
dynamic linking, applications 44, 50
dynamic modules, names . 48

E
ECHO . 84
eliding shared libraries . 34
examples of using libtool . 4
exclude_expsyms . 86
execute mode . 19
export_dynamic_flag_spec 86
export_symbols_cmds . 86
extract_expsyms_cmds . 86

F
f77demo-conf.test . 75
f77demo-exec.test . 75
f77demo-make.test . 75
f77demo-shared.test . 75
f77demo-static.test . 75
failed tests . 75
fast_install . 87
fcdemo-conf.test . 75
fcdemo-exec.test . 75
fcdemo-make.test . 75
fcdemo-shared.test . 75
fcdemo-static.test . 75
FDL, GNU Free Documentation License 92
file_magic . 78
file_magic_cmd . 78
file_magic_test_file . 78
finish mode . 20
finish_cmds . 87

finish_eval . 87
fix_srcfile_path . 87
formal versioning . 37

G
global functions . 40
global_symbol_pipe . 87
global_symbol_to_cdecl . 87

H
hardcode_action . 87
hardcode_direct . 88
hardcode_direct_absolute 88
hardcode_into_libs . 88
hardcode_libdir_flag_spec 88
hardcode_libdir_separator 88
hardcode_minus_L . 88
hardcode_shlibpath_var . 88
header files . 40
host . 88
host_alias . 88
host_os . 88

I
implementation of libtool . 84
include files, portable . 41
include_expsyms . 88
inferring tags . 35
inherit_rpath . 88
install. 11
install mode . 19
install-sh . 31
installation, finishing . 11
int . 57
inter-library dependencies . 43
inter-library dependency . 78

L
language names . 35
languages, non-C . 35
LD . 28, 85
LDFLAGS . 28
libext . 88
libltdl . 50
libname_spec . 89
libraries, definition of . 3
libraries, finishing installation 11
libraries, stripping . 11
library interfaces . 37
library interfaces, design. 40
library object file . 4
library_names_spec . 89
LIBS . 28
libtool . 14

Index 101

libtool command options . 14
libtool examples . 4
libtool implementation . 84
libtool libraries . 6
libtool library versions . 37
libtool specifications . 1
libtoolize . 31
libtoolize command options 31
LIBTOOLIZE OPTIONS . 33
link mode . 16
link-2.test . 74
link.test . 74
link_all_deplibs . 89
link_static_flag . 89
linking against installed libraries 7
linking against uninstalled libraries 8
linking with installed libtool libraries 8
linking, dlopen . 47
linking, dlpreopen . 47
linking, partial . 19
LN_S . 29
LT_CMD_MAX_LEN . 22
LT_CONFIG_LTDL_DIR . 64
LT_DIRSEP_CHAR . 51
lt_dladderror . 64
lt_dladdsearchdir . 55
lt_dladvise . 51
lt_dladvise_destroy . 53
lt_dladvise_ext . 53
lt_dladvise_global . 54
lt_dladvise_init . 53
lt_dladvise_local . 54
lt_dladvise_preload . 54
lt_dladvise_resident . 54
lt_dlcaller_get_data . 60
lt_dlcaller_set_data . 59
lt_dlclose . 54
lt_dlerror . 55
lt_dlexit . 52
lt_dlforeachfile . 55
lt_dlgetinfo . 57
lt_dlhandle . 51
lt_dlhandle_fetch . 59
lt_dlhandle_iterate . 59
lt_dlhandle_map . 58
lt_dlinfo . 57
lt_dlinit . 52
lt_dlinsertsearchdir . 55
lt_dlinterface_free . 58
lt_dlinterface_id . 57
lt_dlinterface_register 58
lt_dlisresident . 55
lt_dlloader . 60
lt_dlloader_add . 63
lt_dlloader_exit . 61
lt_dlloader_remove . 63
lt_dlmakeresident . 55
lt_dlopen . 52

lt_dlopenadvise . 53
lt_dlopenext . 52
lt_dlpreload . 46
lt_dlpreload_callback_func 46
lt_dlpreload_default . 46
lt_dlpreload_open . 46
lt_dlseterror . 64
lt_dlsetsearchpath . 55
lt_dlsym . 54
lt_dlsymbol . 45
lt_dlsymlist . 45, 51
lt_find_sym . 61
LT_FUNC_DLSYM_USCORE . 22
LT_INIT . 25
LT_LANG . 27
LT_LIB_DLLOAD . 22
LT_LIB_M . 22
lt_module . 60
lt_module_close . 61
lt_module_open . 61
LT_OUTPUT . 29
LT_PATH_LD . 22
LT_PATH_NM . 22
LT_PATHSEP_CHAR . 51
lt_preloaded_symbols . 45
LT_PREREQ . 25
LT_SUPPORTED_TAG . 70
LT_SYS_DLOPEN_DEPLIBS . 23
LT_SYS_DLOPEN_SELF . 23
LT_SYS_DLSEARCH_PATH . 23
LT_SYS_MODULE_EXT . 23
LT_SYS_MODULE_PATH . 23
LT_SYS_SYMBOL_USCORE . 23
lt_user_data . 60
lt_user_dlloader . 61
LT_WITH_LTDL . 65
LTCC . 85
LTCFLAGS . 85
LTDL_CONVENIENCE . 69
LTDL_INIT . 65
LTDL_INSTALLABLE . 69
LTDL_SET_PRELOADED_SYMBOLS 46
LTLIBOBJS. 33
LTLIBRARIES . 23
ltmain.sh . 31

M
macro_revision . 89
macro_version . 89
Makefile . 23
Makefile.am . 23
Makefile.in . 23
max_cmd_len . 89
mdemo-conf.test . 73
mdemo-dryrun.test . 73
mdemo-exec.test . 73
mdemo-inst.test . 73

Index 102

mdemo-make.test . 73
mdemo-shared.test . 73
mdemo-static.test . 73
mdemo-unst.test . 73
mdemo2-conf.test . 74
mdemo2-exec.test . 74
mdemo2-make.test . 74
mode, clean . 21
mode, compile . 15
mode, execute . 19
mode, finish . 20
mode, install . 19
mode, link . 16
mode, uninstall . 20
modules, dynamic . 44, 50
motivation for writing libtool 1

N
names of dynamic modules 48
need_lib_prefix . 89
need_locks . 89
need_version . 89
NM . 28, 85
no_builtin_flag . 89
no_undefined_flag . 89
nomode.test . 74
none . 78

O
objdir . 89
OBJDUMP . 29
object files, compiling . 4
object files, library . 4
objectlist.test . 74
objext . 90
old_archive_cmds . 85
old_archive_from_expsyms_cmds 85
old_archive_from_new_cmds 85
old_postinstall_cmds . 90
old_postuninstall_cmds . 90
old_striplib . 90
opaque data types . 40
options, libtool command . 14
options, libtoolize command 31
other implementations, flaws in 2

P
partial linking . 19
pass_all . 78
pdemo-conf.test . 74
pdemo-exec.test . 74
pdemo-inst.test . 74
pdemo-make.test . 74
PIC (position-independent code) 4
pic_flag . 90

pitfalls using C++ . 35
pitfalls with dlopen . 49
portable C headers . 41
position-independent code . 4
postinstall_cmds . 90
postinstallation . 11
postuninstall_cmds . 90
problem reports . 76
problems, blaming somebody else for 71
problems, solving . 71
program wrapper scripts . 8

Q
quote.test . 74

R
ranlib . 6
RANLIB . 28, 85
reload_cmds . 90
reload_flag . 90
renaming interface functions 40
reporting bugs . 76
reusability of library systems 2
runpath_var . 90

S
saving time . 34
security problems with buggy linkers 7
sh.test . 74
shared libraries, not using . 34
shared library versions . 37
shl_load . 44, 50
shlibpath_overrides_runpath 90
shlibpath_var . 90
solving problems . 71
soname_spec . 90
specifications for libtool . 1
standalone binaries . 13
static linking . 12
strip . 10
striplib . 90
stripping libraries . 11
su . 10
suffix.test . 74
sys_lib_dlsearch_path_spec 90
sys_lib_search_path_spec 90

T
tag names . 35
tagdemo-conf.test . 74
tagdemo-exec.test . 74
tagdemo-make.test . 74
tagdemo-shared.test . 74
tagdemo-static.test. 74

Index 103

tagdemo-undef.test . 74
test suite . 71
test_compile . 78
tests, failed . 75
thread_safe_flag_spec . 91
time, saving . 34
trace interface . 70
tricky design issues. 1
trouble with C++ . 35
trouble with dlopen . 49
troubleshooting . 71

U
undefined symbols, allowing 16

uninstall mode . 20
unknown . 78
unresolved symbols, allowing 16
using shared libraries, not . 34

V
version_type . 91
versioning, formal . 37

W
whole_archive_flag_spec 91
wl . 91
wrapper scripts for programs 8

i

Table of Contents

1 Introduction . 1
1.1 Motivation for writing libtool. 1
1.2 Implementation issues . 1
1.3 Other implementations . 2
1.4 A postmortem analysis of other implementations 2

2 The libtool paradigm. 3

3 Using libtool . 4
3.1 Creating object files . 4
3.2 Linking libraries . 6
3.3 Linking executables. 7
3.4 Debugging executables . 9
3.5 Installing libraries . 10
3.6 Installing executables . 12
3.7 Linking static libraries . 12

4 Invoking libtool . 14
4.1 Compile mode . 15
4.2 Link mode . 16
4.3 Execute mode . 19
4.4 Install mode . 19
4.5 Finish mode . 20
4.6 Uninstall mode . 20
4.7 Clean mode . 21

5 Integrating libtool with your package 22
5.1 Autoconf macros exported by libtool . 22
5.2 Writing ‘Makefile’ rules for libtool . 23
5.3 Using Automake with libtool . 23
5.4 Configuring libtool . 24

5.4.1 The LT_INIT macro . 25
5.4.2 Platform-specific configuration notes . 30

5.5 Including libtool in your package . 31
5.5.1 Invoking libtoolize . 31
5.5.2 Autoconf and LTLIBOBJS . 33

5.6 Static-only libraries . 34

6 Using libtool with other languages 35
6.1 Writing libraries for C++ . 35
6.2 Tags . 35

ii

7 Library interface versions 37
7.1 What are library interfaces? . 37
7.2 Libtool’s versioning system . 37
7.3 Updating library version information. 38
7.4 Managing release information . 38

8 Tips for interface design. 40
8.1 Writing C header files . 41

9 Inter-library dependencies 43

10 Dlopened modules . 44
10.1 Building modules to dlopen . 44
10.2 Dlpreopening . 44
10.3 Linking with dlopened modules . 47
10.4 Finding the correct name to dlopen . 48
10.5 Unresolved dlopen issues . 49

11 Using libltdl . 50
11.1 How to use libltdl in your programs . 50
11.2 Creating modules that can be dlopened . 56
11.3 Using libltdl in a multi threaded environment 57
11.4 Data associated with loaded modules . 57
11.5 How to create and register new module loaders 60

11.5.1 Error handling within user module loaders 64
11.6 How to distribute libltdl with your package 64

12 Libtool’s trace interface 70

13 Troubleshooting . 71
13.1 The libtool test suite . 71

13.1.1 Description of test suite . 71
13.1.2 When tests fail . 75

13.2 Reporting bugs . 75

iii

14 Maintenance notes for libtool. 77
14.1 Porting libtool to new systems . 77

14.1.1 Information sources . 77
14.1.2 Porting inter-library dependencies support 78

14.2 Tested platforms . 79
14.3 Platform quirks . 82

14.3.1 References . 82
14.3.2 Compilers . 83
14.3.3 Reloadable objects . 83
14.3.4 Multiple dependencies . 84
14.3.5 Archivers . 84

14.4 libtool script contents . 84
14.5 Cheap tricks . 91

Appendix A GNU Free Documentation License
. 92

Index . 99

	Introduction
	Motivation for writing libtool
	Implementation issues
	Other implementations
	A postmortem analysis of other implementations

	The libtool paradigm
	Using libtool
	Creating object files
	Linking libraries
	Linking executables
	Debugging executables
	Installing libraries
	Installing executables
	Linking static libraries

	Invoking libtool
	Compile mode
	Link mode
	Execute mode
	Install mode
	Finish mode
	Uninstall mode
	Clean mode

	Integrating libtool with your package
	Autoconf macros exported by libtool
	Writing Makefile rules for libtool
	Using Automake with libtool
	Configuring libtool
	The LT_INIT macro
	Platform-specific configuration notes

	Including libtool in your package
	Invoking libtoolize
	Autoconf and LTLIBOBJS

	Static-only libraries

	Using libtool with other languages
	Writing libraries for C++
	Tags

	Library interface versions
	What are library interfaces?
	Libtool's versioning system
	Updating library version information
	Managing release information

	Tips for interface design
	Writing C header files

	Inter-library dependencies
	Dlopened modules
	Building modules to dlopen
	Dlpreopening
	Linking with dlopened modules
	Finding the correct name to dlopen
	Unresolved dlopen issues

	Using libltdl
	How to use libltdl in your programs
	Creating modules that can be dlopened
	Using libltdl in a multi threaded environment
	Data associated with loaded modules
	How to create and register new module loaders
	Error handling within user module loaders

	How to distribute libltdl with your package

	Libtool's trace interface
	Troubleshooting
	The libtool test suite
	Description of test suite
	When tests fail

	Reporting bugs

	Maintenance notes for libtool
	Porting libtool to new systems
	Information sources
	Porting inter-library dependencies support

	Tested platforms
	Platform quirks
	References
	Compilers
	Reloadable objects
	Multiple dependencies
	Archivers

	libtool script contents
	Cheap tricks

	GNU Free Documentation License
	Index

